• 现代魔法学院——闲聊哈希表及哈希表的链地址法实现


    经典数据结构教科书中,“表”是数据结构的一个大家族。其中,有顺序表(数组)、单向链表、双向链表、循环链表等等。我们今天聊的不是这些,而是“表”中的异类——哈希表(Hash Table)。

    为啥需要哈希表

    为什么会有哈希表这种数据结构呢?让我们用一个通俗的例子来理解:

    大家一定都查过字典吧,我们知道,《新华字典》是按照读音排序的,可以理解为一个以读音为key,按升序排列的数据库。对于读音已知的字,可以通过“二分查找法”,很快地查找到要找的字,其时间复杂度为O(log2n)。但是,对于不知道读音的字怎么办呢?如果使用“顺序查找”,一页一页地翻字典,假设一本新华字典600页,每翻查一页的时间开销为0.5分钟,那么,每查到一个字耗费的时间t的数学期望值E(t) = 600 * 0.5min / 2 =150min,也就是查一个字需要两个半小时!当然,这是难以接受的。

    为了解决这个问题,《新华字典》的编辑们,很快就想出了解决办法,那就是在字典的前面加入一个“检字表”,如“四角号码检字表”“部首检字表”等,其特点是以每个字的字形为依据,计算出一个索引值,并映射到对应的页数。比如“法”字,按四角号码检字法,其索引值为34131,再根据这个数值,就可以找到相应的字了。在这种情况下,查找算法的时间复杂度接近于O(1)。换句话说,字典再厚,也不会明显地影响到查字典的效率了。

    Linux内核中的hash与bucket这个条目里,我们谈到了,哈希表能够实现高效的数据存储和查找,这是其它数据结构很难替代的。计算机里大数据比比皆是,比如说你每本书都像字典那么厚,你还能用传统的查找方法一页页翻吗?这种效率很难让人接受的。

    哈希表举例

    好,让我们回到计算机的世界中来。

    哈希表的最大特点,是数据存储位置(偏移量)和数据记录的内容相关,存在着一个函数换算关系:

    1 Offset = Hash (Key)

    其中,Offset为数据存储的偏移量,Hash为散列函数(Hash Function),Content为数据记录内容的关键字(Hash Key)。假设,我们要建立一张NowaMagic全球访问量统计表,每条记录包含下面的数据结构:

    1 struct access_record_t {
    2     unsigned index_i; /* Index*/
    3     charcountry_name[MAX_COUNTRY_NAME_LEN]; /* 国家/地区名 */
    4     unsigned long long access_count;/* 访问量 */
    5 };

    我们可以用一个一维数组access_record存储这张表,其中access_record[index_i]为编号为index_i的国家的记录,也就是说,数据的存储位置由index_i值唯一确定。例如,中国大陆的index_i值为86,那么,access_record[86].access_count即为NowaMagic在中国大陆地区的访问量。

    然而,我们知道,“China”比起数字86来,明显更接近自然语言,对于人脑的记忆来说更方便,所以,我们能不能想一个办法,做一个从国家/地区名到数字索引的映射呢?这就涉及到散列函数(Hash Function)了。

    哈希函数

    散列函数(Hash Function)又名哈希函数,是计算机科学中一个重要的课题。什么是散列函数呢?其实,这个概念并没有一个严格的定义。一般说来,散列函数满足以下的条件:

    1. 对输入值运算,得到一个固定长度的摘要(Hash value);
    2. 不同的输入值可能对应同样的输出值;

    以下的函数都可以认为是一个散列函数:

    • f(x) = x mod 16;  (1)
    • f(x) = (x2 + 10) * x;  (2)
    • f(x) = (x | 0×0000FFFF) XOR (x >> 16);  (3)

    不过,仅仅满足上面这两条的函数,作为散列函数,还有不足的地方。我们还希望散列函数满足下面几点:

    1. 散列函数的输出值尽量接近均匀分布;
    2. x的微小变化可以使f(x)发生非常大的变化,即所谓“雪崩效应”(Avalanche effect);

    上面两点用数学语言表示,就是:

    1. 输出值y的分布函数F(y)=y/m, m为散列函数的最大值。或记为y~U[0, m]
    2. |df(x)/dx| >> 1;

    从上面两点,大家看看,前面举例的三个散列函数,哪个更好呢?对了,是第三个:f(x) = (x | 0×0000FFFF) XOR (x >> 16);

    它很完美地满足“好的散列函数”的两个附加条件。

    那么,为什么散列函数要带有这两个附加条件呢?原来,这是为了减少“哈希冲突”(Hashcollision),也就是两个不同输入产生了相同输出值的情况。根据抽屉原理,Hash算法不可能没有冲突(collision),但是,由于冲突会造成一些问题,可能会影响到应用Hash函数的某些算法的效率,所以,我们需要尽量避免之。这样,对Hash算法的选择,就是很重要的了。密码学中的著名摘要算法的MD5SHA1,以及另一种用于字符串摘要计算的Jenkins Hash算法,都是很经典的Hash算法,有兴趣的同学可以阅读参考。

    对计算机信息安全感兴趣的同学,一定听说过密码学家王小云教授。王教授成名的贡献,就是发现了大大加速找出MD5和SHA1等Hash算法冲突的方法。譬如,根据“生日攻击”理论,对于Hash value为160bit的SHA1算法,找出一个Hash冲突需要280次运算,而王小云找出了一个269次运算就能找出冲突的算法,也就是提高了211=2048倍的效率!所以说,王教授的成果大大动摇了现代密码学的基础。

    这时再来一个问题:Hash表中,数据存储的位置,是通过Hash函数计算得到的。那么,如果两条数据记录的Hash值发生冲突,应该怎么办呢?

    哈希冲突的处理

    在Hash表的建立时,会发生Hash值冲突的情况。实际上,如果记录Hash值的范围多于Hash表的条数,根据抽屉原理,一定会发生冲突。对于冲突的处理,我们一般有这几种方法:

    1. 对Hash表中每个Hash值建立一个冲突表,即将冲突的几个记录以表的形式存储在其中;
    2. 改变规则重新计算一次Hash值;
    3. 建立一个公用的区域存放冲突的表项;

    在工程上,考虑到实现算法的复杂度,方法1用得是最多的。对于方法1,又有两种不同的实现,一种方法是对每个Hash值,建立一个Hash桶(Bucket),桶的容量是固定的,也就是只能处理固定次数的冲突,如1048576个Hash桶,每个桶中有4个表项(Entry),总计4M个表项。另一种方法是,不限制Hash桶的容量,以链表形式将冲突的记录挂接在一个Hash桶中。

    这两种实现各有什么利弊呢?首先,让我们看看第一种实现:

    在这种情况下,由于Hash桶容量的限制,所以,有可能发生Hash表填不满的情况,也就是,虽然Hash表里面还有空位,但是新建的表项由于冲突过多,而不能装入Hash表中。不过,这样的实现也有其好处,就是查表的最大开销是可以确定的,因为最多处理的冲突数是确定的,所以算法的时间复杂度为O(1)+O(m),其中m为Hash桶容量。

    而另一种实现,由于Hash桶的容量是无限的,因此,只要没有超出Hash表的最大容量,就能够容纳新建的表项。但是,一旦发生了Hash冲突严重的情况,就会造成Hash桶的链表过长,大大降低查找效率。在最坏的情况下,时间复杂度退化为O(n),其中n为Hash表的总容量。当然,这种情况的概率小之又小,几乎是可以忽略的。

    Hash表的一个应用例子,是在网关(Gateway)中。以网络防火墙为例,它是根据源IP,目的IP,源端口,目的端口,协议号构成的五元组来标识一条网络数据流的,并且根据五元组来建立会话表项(session entry)。为了查找便捷,一般都使用Hash表来实现这个会话表,以提高转发的效率。事实上,对于大量表项的查找,逐项查找是不允许的,一般都使用Hash表来实现。不夸张的说,我们可以说,在你生活的每一天,都免不了同Hash表打交道,比如,查字典。

    最后,我想说,数据结构的万紫千红中,我独爱Hash表这一种。

    用C语言实现一个哈希表

    哈希表(Hash table,也叫散列表),是根据关键码值(Key value)而直接进行访问的数据结构。也就是说,它通过把关键码值映射到表中一个位置来访问记录,以加快查找的速度。哈希表在像Java、C#等语言中是与生俱来的。可是在C的世界中,似乎只有自己动手,丰衣足食了。

    哈希表实现中需要注意的问题。

    1. 哈希函数

    也叫散列函数,即:根据key,计算出key对应记录的储存位置:position = f(key)

    散列函数满足以下的条件:

    1. 对输入值运算,得到一个固定长度的摘要(Hash value);
    2. 不同的输入值可能对应同样的输出值;

    以下的函数都可以认为是一个散列函数:

    • f(x) = x mod 16;
    • f(x) = (x2 + 10) * x; 
    • f(x) = (x | 0×0000FFFF) XOR (x >> 16); 

    不过,仅仅满足上面这两条的函数,作为散列函数,还有不足的地方。我们还希望散列函数满足下面几点:

    1. 散列函数的输出值尽量接近均匀分布;
    2. x的微小变化可以使f(x)发生非常大的变化,即所谓“雪崩效应”(Avalanche effect);

    上面两点用数学语言表示,就是:

    1. 输出值y的分布函数F(y)=y/m, m为散列函数的最大值。或记为y~U[0, m]
    2. |df(x)/dx| >> 1;
    从上面两点,大家看看,前面举例的三个散列函数,哪个更好呢?对了,是第三个:f(x) = (x | 0×0000FFFF) XOR (x >> 16);

    2、哈希冲突(Hash collision)

    也就是两个不同输入产生了相同输出值的情况。首先,哈希冲突是无法避免的,因此,哈希算法的选择直接决定了哈希冲突发送的概率;同时必须要对哈希冲突进行处理,方法主要有以下几种:

    1. 链地址法。即对Hash表中每个Hash值建立一个冲突表,即将冲突的几个记录以表的形式存储在其中。具体可以参照 散列冲突处理:链地址法 。
    2. 开放地址法。具体可以参照 散列冲突处理:开放定址法 。
    用C语言实现一个Hash表
    //#include "stdafx.h"
    #include "string.h"
    #include "stdio.h"
    #include "stdlib.h"
    
    typedef struct _node
    {
        char *name;
        char *desc;
        struct _node *next;
    } node;
    
    #define HASHSIZE 101
    static node* hashtab[HASHSIZE];
    
    void inithashtab()
    {
        int i;
        for(i=0; i < HASHSIZE; i++)
            hashtab[i]=NULL;
    }
    
    unsigned int hash(char *s)
    {
        unsigned int h=0;
        for(; *s; s++)
            h=*s+h*31;
        return h%HASHSIZE;
    }
    
    node* lookup(char *n)
    {
        unsigned int hi=hash(n);
        node* np=hashtab[hi];
        for(; np!=NULL; np=np->next)
        {
            if(!strcmp(np->name,n))
                return np;
        }
    
        return NULL;
    }
    
    char* m_strdup(char *o)
    {
        int l=strlen(o)+1;
        char *ns=(char*)malloc(l*sizeof(char));
        strcpy(ns,o);
        if(ns==NULL)
            return NULL;
        else
            return ns;
    }
    
    char* get(char* name)
    {
        node* n=lookup(name);
        if(n==NULL)
            return NULL;
        else
            return n->desc;
    }
    
    int install(char* name,char* desc)
    {
        unsigned int hi;
        node* np;
        if((np=lookup(name))==NULL)
        {
            hi=hash(name);
            np=(node*)malloc(sizeof(node));
            if(np==NULL)
                return 0;
            np->name=m_strdup(name);
            if(np->name==NULL) return 0;
            np->next=hashtab[hi];
            hashtab[hi]=np;
        }
        else
            free(np->desc);
        np->desc=m_strdup(desc);
        if(np->desc==NULL) return 0;
    
        return 1;
    }
    
    /* A pretty useless but good debugging function,
    which simply displays the hashtable in (key.value) pairs
    */
    void displaytable()
    {
        int i;
        node *t;
        for(i=0; i < HASHSIZE; i++)
        {
            if(hashtab[i]==NULL)
                printf("()");
            else
            {
                t=hashtab[i];
                printf("(");
                for(; t!=NULL; t=t->next)
                    printf("(%s.%s) ",t->name,t->desc);
                printf(".)");
            }
        }
    }
    
    void cleanup()
    {
        int i;
        node *np,*t;
        for(i=0; i < HASHSIZE; i++)
        {
            if(hashtab[i]!=NULL)
            {
                np=hashtab[i];
                while(np!=NULL)
                {
                    t=np->next;
                    free(np->name);
                    free(np->desc);
                    free(np);
                    np=t;
                }
            }
        }
    }
    
    main()
    {
        int i;
        char* names[]= {"name","address","phone","k101","k110"};
        char* descs[]= {"Sourav","Sinagor","26300788","Value1","Value2"};
    
        inithashtab();
        for(i=0; i < 5; i++)
            install(names[i],descs[i]);
    
        printf("Done");
        printf("If we didnt do anything wrong..""we should see %s
    ",get("k110"));
    
        install("phone","9433120451");
    
        printf("Again if we go right, we have %s and %s",get("k101"),get("phone"));
    
        /*displaytable();*/
        cleanup();
        return 0;
    }






  • 相关阅读:
    分布式计算框架——MapReduce
    Hadoop总结
    HBase原理总结
    LeetCode牛客148题
    LeetCode刷题[Python版]
    【Linux】netstat命令详解
    基于docker搭建Prometheus+Grafana监控(一)
    Zabbix笔记一:zabbix安装
    【Linux】vi/vim中如果替换
    【redis】Redis学习:redis测试注意点
  • 原文地址:https://www.cnblogs.com/tham/p/6827313.html
Copyright © 2020-2023  润新知