• 部分kafka面试题


    Kafka ack 机制(数据可靠性保证)

    0:不等待 broker 返回确认消息

    1:等待 topic 中某个 partition leader 保存成功的状态反馈

    -1:等待 topic 中某个 partition 所有副本都保存成功的状态反馈

    仅设置 acks=-1 也不能保证数据不丢失,当 Isr 列表中只有 Leader 时,同样有可能造成数据丢失。要保证数据不丢除了设置 acks=-1, 还要保证 ISR 的大小大于等于 2,具体参数设置:

    l request.required.acks:设置为-1 等待所有 ISR 列表中的 Replica 接收到消息后采算写成功;

    l min.insync.replicas: 设置为大于等于 2,保证 ISR 中至少有两个 Replica

    注意:Producer 要在吞吐率和数据可靠性之间做一个权衡

     如何保证 kafka 消费者消费数据是全局有序的

    伪命题

    如果要全局有序的,必须保证生产有序,存储有序,消费有序。

    由于生产可以做集群,存储可以分片,消费可以设置为一个 consumerGroup,要保证全局有序,就需要保证每个环节都有序。

    只有一个可能,就是一个生产者,一个 partition,一个消费者。这种场景和大数据应用场景相悖。

    Kafka 数据一致性保证

    一致性定义:若某条消息对 client 可见,那么即使 Leader 挂了,在新 Leader 上数据依然可以被读到。

    HW-HighWaterMark: client 可以从 Leader 读到的最大 msg offset,即对外可见的最大 offset, HW=max(replica.offset)

    对于 Leader 新收到的 msg,client 不能立刻消费,Leader 会等待该消息被所有 ISR 中的 replica 同步后,更新 HW,此时该消息才能被 client 消费,这样就保证了如果 Leader fail,该消息仍然可以从新选举的 Leader 中获取。

    对于来自内部 Broker 的读取请求,没有 HW 的限制。同时,Follower 也会维护一份自己的 HW,Folloer.HW = min(Leader.HW, Follower.offset)

     Kafka zookeeper 上记录了哪些信息

    一共在 zookeeper 上记录了这些节点:consumers、admin、config、controller、brokers、controller_epoch。

    其中 controller_epoch 节点记录了 kafka 中的 center controller 选举的次数,这个值初始为 1,当 controller 挂掉后重新选举时这个值+1。

    Controller 节点记录了中央控制器所在哪一台 broker 的信息。

    Zookeeper kafka 中的作用

    (1) Controller 选举、

    (2) 记录集群中有哪些 broker、

    (3) 记录集群中有哪些 topic,topic 都有哪些 partition,副本在哪里,leader 是谁。

  • 相关阅读:
    loj#2020. 「AHOI / HNOI2017」礼物
    loj#117. 有源汇有上下界最小流
    loj#6491. zrq 学反演
    loj#6261. 一个人的高三楼
    loj#528. 「LibreOJ β Round #4」求和
    2018-2019 ACM-ICPC Brazil Subregional Programming Contest
    2015-2016 ACM-ICPC, NEERC, Moscow Subregional Contest J
    2015-2016 ACM-ICPC Northeastern European Regional Contest (NEERC 15)C
    addEventListener() 和 removeEventListener()
    9个图片滑块动画
  • 原文地址:https://www.cnblogs.com/tesla-turing/p/12719070.html
Copyright © 2020-2023  润新知