• 讲解Flume


    Spark Streaming通过push模式和pull模式两种模式来集成Flume
    push模式:Spark Streaming端会启动一个基于Avro Socket Server的Receiver来接收Flume中的avro sink发来的数据,这个时候Flume avro sink就是作为客户端
    pull模式:这种模式是Spark自定义了一个Flume的sink作为Avro Server,flume收集到的数据发往这个sink,然后数据存储在这个sink的缓存中,然后Spark Streaming启动包含有Avro Client的Recevier从自定义的Flume的sink中拉取数据。相对于push模式,这种模式更加的可靠不会丢失数据,这个是因为以下两点原因:
    1、pull模式的Receiver是一个可靠的Receiver,就是这个Receiver接收到了数据,并且将这个数据存储并且备份了后会发送一个ack响应给Flume的sink
    2、结合Flume的事务特性,保证了数据不会丢失,一定会拉取到数据,如果没有拉取成功的话(就是Flume Sink没有接收到Receiver发送的ack),则事务失败

    4个demo看懂Flume

    1、netcat数据展示到console

    bin/flume-ng agent --conf conf --conf-file conf/flume-conf.properties --name agent1 -Dflume.root.logger=INFO,console
    ## 定义 sources、channels 以及 sinks
    agent1.sources = netcatSrc
    agent1.channels = me moryChannel
    agent1.sinks = loggerSink
    
    ## netcatSrc 的配置
    agent1.sources.netcatSrc.type = netcat
    agent1.sources.netcatSrc.bind = localhost 
    agent1.sources.netcatSrc.port = 44445
    
    ## loggerSink 的配置
    agent1.sinks.loggerSink.type = logger
    
    ## memoryChannel 的配置
    agent1.channels.memoryChannel.type = memory
    agent1.channels.memoryChannel.capacity = 100
    
    ## 通过 memoryChannel 连接 netcatSrc 和 loggerSink
    agent1.sources.netcatSrc.channels = memoryChannel
    agent1.sinks.loggerSink.channel = memoryChannel
    

      

    2、netcat数据保存到HDFS,分别使用memory和file channal

    bin/flume-ng agent --conf conf --conf-file conf/flume-conf.properties --name agent1
    telnet localhost 44445
    ## 定义 sources、channels 以及 sinks
    agent1.sources = netcatSrc
    agent1.channels = memoryChannel
    agent1.sinks = hdfsSink
    
    ## netcatSrc 的配置
    agent1.sources.netcatSrc.type = netcat
    agent1.sources.netcatSrc.bind = localhost
    agent1.sources.netcatSrc.port = 44445
    
    ## hdfsSink 的配置
    agent1.sinks.hdfsSink.type = hdfs
    agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9999/user/hadoop-twq/spark-course/steaming/flume/%y-%m-%d
    agent1.sinks.hdfsSink.hdfs.batchSize = 5
    agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true
    
    ## memoryChannel 的配置
    agent1.channels.memoryChannel.type = memory
    agent1.channels.memoryChannel.capacity = 100
    
    ## 通过 memoryChannel 连接 netcatSrc 和 hdfsSink
    agent1.sources.netcatSrc.channels = memoryChannel
    agent1.sinks.hdfsSink.channel = memoryChannel
    

      

    3、日志文件数据保存到HDFS

    bin/flume-ng agent --conf conf --conf-file conf/flume-conf.properties --name agent1
    echo testdata >> webserver.log
    ## 定义 sources、channels 以及 sinks
    agent1.sources = logSrc
    agent1.channels = fileChannel
    agent1.sinks = hdfsSink
    
    ## logSrc 的配置
    agent1.sources.logSrc.type = exec
    agent1.sources.logSrc.command = tail -F /home/hadoop-twq/spark-course/steaming/flume-course/demo3/logs/webserver.log
    
    ## hdfsSink 的配置
    agent1.sinks.hdfsSink.type = hdfs
    agent1.sinks.hdfsSink.hdfs.path = hdfs://master:9999/user/hadoop-twq/spark-course/steaming/flume/%y-%m-%d
    agent1.sinks.hdfsSink.hdfs.batchSize = 5
    agent1.sinks.hdfsSink.hdfs.useLocalTimeStamp = true
    
    ## fileChannel 的配置
    agent1.channels.fileChannel.type = file
    agent1.channels.fileChannel.checkpointDir = /home/hadoop-twq/spark-course/steaming/flume-course/demo2-2/checkpoint
    agent1.channels.fileChannel.dataDirs = /home/hadoop-twq/spark-course/steaming/flume-course/demo2-2/data
    
    ## 通过 fileChannel 连接 logSrc 和 hdfsSink
    agent1.sources.logSrc.channels = fileChannel
    agent1.sinks.hdfsSink.channel = fileChannel
    

      

     数据收集,从一个数据源经过channels,Sink到存储结构上,以event的方式发送

     Spark Streaming 集成 Flume (push模式)

    Spark Streaming通过push模式和pull模式两种模式来集成Flume
    push模式:Spark Streaming端会启动一个基于Avro Socket Server的Receiver来接收Flume中的avro sink发来的数据,这个时候Flume avro sink就是作为客户端
    pull模式:这种模式是Spark自定义了一个Flume的sink作为Avro Server,flume收集到的数据发往这个sink,然后数据存储在这个sink的缓存中,然后Spark Streaming启动包含有Avro Client的Recevier从自定义的Flume的sink中拉取数据。相对于push模式,这种模式更加的可靠不会丢失数据,这个是因为以下两点原因:
    1、pull模式的Receiver是一个可靠的Receiver,就是这个Receiver接收到了数据,并且将这个数据存储并且 备份了后会发送一个ack响应给Flume的sink
    2、结合Flume的事务特性,保证了数据不会丢失,一定会拉取到数据,如果没有拉取成功的话(就是Flume Sink没有接收到Receiver发送的ack),则事务失败
     
     

    import org.apache.spark.SparkConf
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming._
    import org.apache.spark.streaming.dstream.DStream
    import org.apache.spark.streaming.flume._
    import org.apache.spark.util.IntParam
    
    /**
     *  Produces a count of events received from Flume.
     *
     *  This should be used in conjunction with an AvroSink in Flume. It will start
     *  an Avro server on at the request host:port address and listen for requests.
     *  Your Flume AvroSink should be pointed to this address.
     *
      * Flume-style Push-based Approach(Spark Streaming作为一个agent存在)
      *
      * 1、在slave1(必须要有spark的worker进程在)上启动一个flume agent
      * bin/flume-ng agent -n agent1 -c conf -f conf/flume-conf.properties
      *
      * 2、启动Spark Streaming应用
     spark-submit --class com.twq.streaming.flume.FlumeEventCountPushBased 
     --master spark://master:7077 
     --deploy-mode client 
     --driver-memory 512m 
     --executor-memory 512m 
     --total-executor-cores 4 
     --executor-cores 2 
     /home/hadoop-twq/spark-course/streaming/spark-streaming-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar 
     172.26.232.97 44446
    
     3、在slave1上 telnet slave1 44445 发送消息
     */
    object FlumeEventCountPushBased {
      def main(args: Array[String]) {
        if (args.length < 2) {
          System.err.println(
            "Usage: FlumeEventCount <host> <port>")
          System.exit(1)
        }
    
        val Array(host, port) = args
    
        val batchInterval = Milliseconds(2000)
    
        // Create the context and set the batch size
        val sparkConf = new SparkConf().setAppName("FlumeEventCount")
        val ssc = new StreamingContext(sparkConf, batchInterval)
    
        // Create a flume stream
        val stream: DStream[SparkFlumeEvent] = FlumeUtils.createStream(ssc, host, port.toInt, StorageLevel.MEMORY_ONLY_SER_2)
    
        // Print out the count of events received from this server in each batch
        stream.count().map(cnt => "Received " + cnt + " flume events." ).print()
    
        ssc.start()
        ssc.awaitTermination()
      }
    }
    

      

    import org.apache.spark.SparkConf
    import org.apache.spark.streaming._
    import org.apache.spark.streaming.flume._
    import org.apache.spark.util.IntParam
    
    /**
     *  Produces a count of events received from Flume.
     *
     *  This should be used in conjunction with the Spark Sink running in a Flume agent. See
     *  the Spark Streaming programming guide for more details.
     *
      * Pull-based Approach using a Custom Sink(Spark Streaming作为一个Sink存在)
      *
      * 1、将jar包scala-library_2.11.8.jar(这里一定要注意flume的classpath下是否还有其他版本的scala,要是有的话,则删掉,用这个,一般会有,因为flume依赖kafka,kafka依赖scala)、
      * commons-lang3-3.5.jar、spark-streaming-flume-sink_2.11-2.2.0.jar
      * 放置在master上的/home/hadoop-twq/spark-course/streaming/spark-streaming-flume/apache-flume-1.8.0-bin/lib下
      *
      * 2、配置/home/hadoop-twq/spark-course/streaming/spark-streaming-flume/apache-flume-1.8.0-bin/conf/flume-conf.properties
      *
      * 3、启动flume的agent
      * bin/flume-ng agent -n agent1 -c conf -f conf/flume-conf.properties
      *
      * 4、启动Spark Streaming应用
     spark-submit --class com.twq.streaming.flume.FlumeEventCountPullBased 
     --master spark://master:7077 
     --deploy-mode client 
     --driver-memory 512m 
     --executor-memory 512m 
     --total-executor-cores 4 
     --executor-cores 2 
     /home/hadoop-twq/spark-course/streaming/spark-streaming-datasource-1.0-SNAPSHOT-jar-with-dependencies.jar 
     master 44446
    
     3、在master上 telnet localhost 44445 发送消息
    
     */
    object FlumeEventCountPullBased {
      def main(args: Array[String]) {
        if (args.length < 2) {
          System.err.println(
            "Usage: FlumePollingEventCount <host> <port>")
          System.exit(1)
        }
    
        val Array(host, port) = args
    
        val batchInterval = Milliseconds(2000)
    
        // Create the context and set the batch size
        val sparkConf = new SparkConf().setAppName("FlumePollingEventCount")
        val ssc = new StreamingContext(sparkConf, batchInterval)
    
        // Create a flume stream that polls the Spark Sink running in a Flume agent
        val stream = FlumeUtils.createPollingStream(ssc, host, port.toInt)
    
        // Print out the count of events received from this server in each batch
        stream.count().map(cnt => "Received " + cnt + " flume events." ).print()
    
        ssc.start()
        ssc.awaitTermination()
      }
    }
    

      

  • 相关阅读:
    IDEA创建一个javaweb工程(在module中)以及配置Tomcat
    晨会复盘
    cnblog 笔记思路
    Mysql执行计划-extra
    Mysql执行计划分析-type(access_type)
    Mysql执行计划-selectType
    刻意训练
    MYSQL执行计划
    个人展望-程序员职业规划
    服务拆分原则
  • 原文地址:https://www.cnblogs.com/tesla-turing/p/11488650.html
Copyright © 2020-2023  润新知