• Spark Streaming的原理


    Spark Streaming应用也是Spark应用,Spark Streaming生成的DStream最终也是会转化成RDD,然后进行RDD的计算,所以Spark Streaming最终的计算是RDD的计算,那么Spark Streaming的原理当然也包含了Spark应用通用的原理。Spark Streaming作为实时计算的技术,和其他的实时计算技术(比如Storm)不太一样,我们可以将Spark Streaming理解为micro-batch模式的实时计算,也就是说Spark Streaming本质是批处理,就是这个批处理之间的时间间隔是非常的小,这个时间间隔最小是500ms,基本上可以适合企业中80%的实时计算场景。
    在实时计算的步骤中,Spark Streaming当然也包含了实时接收数据过程、数据的transformation过程以及数据结果输出过程三个最基本的过程。Spark Streaming在数据接收的部分包括基于Receiver模式以及Direct模式(Kafka Direct),接下来详细的讲解下基于Receiver模式的Spark Streaming应用的原理。
    当我们使用spark-submit提交一个Spark Streaming应用的时候,向集群申请到资源并且初始化需要的Executor后,Spark Streaming应用的执行过程包括两部分:一个是StreamingContext的初始化,一个是Spark Streaming应用对Receiver实时接收到的数据的实时计算。以下分别介绍
    StreamingContext的初始化:
    StreamingContext的初始化的时候,会初始化DStreamGraph和JobScheduler两个模块,其中DStreamGraph包含了InputDStream和OutputDStream两个DStream,InputDStream中包含了Receiver信息,OutputDStream包含了最终结果的输出信息,这两个DStream之间就是一系列的业务Transformations。JobScheduler中包含了JobGenerator和ReceiverTracker,JobGenerator中有一个定时器,用于定时的触发并生成批次定时任务,ReceiverTracker用于跟踪Receiver接收的数据,当ReceiverTracker初始化的时候会从DStreamGraph中InputDStream拿到Receiver,然后在一个Executor上启动这个Receiver,至此StreamingContext的初始化完成
    Spark Streaming应用对Receiver实时接收到的数据的实时计算
    Receiver将实时接收到的数据存储在Executor的内存中,由BlockManager管理,存储完数据后会告诉ReceiverTracker数据块存储的位置,方便ReceiverTracker跟踪定位;当我们设定的batch interval时间到了的时候,JobGenerator就会告诉ReceiverTracker定位所有这个batch interval收集到的数据,并且生成一个定时任务,这个定时任务就会根据ReceiverTracker定位到的所有的数据块生成一个BlockRDD(这个是RDD链中的第一个需要执行的),并且根据InputDStream和OutputDStream两个DStream之间的一系列的业务Transformations生成RDD链,最后生成RDD DAG,进行RDD的计算任务的提交,这个时候就来到了Spark RDD的任务提交的原理的,可以参考Spark Core中的内容
    注意:上面的原理是讲解基于Receiver模式的,还有比如Kafka Direct模式在数据接收的地方和这个稍有不同,其他的数据处理流程是一样
  • 相关阅读:
    rabbitMQ和对应的erlang版本匹配
    Jfinal文件上传基础路径问题,windows下会以项目根路径为基础路径
    Linux常用命令-vim
    nginx配置https
    mysql创建表时,设置timestamp DEFAULT NULL报错1067
    Linux命令yum和rpm
    git reset命令使用
    jfinal定时任务插件jfinal-quartz
    quartz配置参数org.quartz.jobStore.misfireThreshold含义解释
    多层级树形结构数据库存储方式
  • 原文地址:https://www.cnblogs.com/tesla-turing/p/11488256.html
Copyright © 2020-2023  润新知