• 编程模型:数据处理层


    Basic相关API

    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
    
    /**
      * WordCount程序,Spark Streaming消费TCP Server发过来的实时数据的例子:
      *
      * 1、在master服务器上启动一个Netcat server
      * `$ nc -lk 9998` (如果nc命令无效的话,我们可以用yum install -y nc来安装nc)
      *
      * 2、用下面的命令在在集群中将Spark Streaming应用跑起来
       spark-submit --class com.dev.streaming.NetworkWordCount 
       --master spark://master:7077 
       --deploy-mode client 
       --driver-memory 512m 
       --executor-memory 512m 
       --total-executor-cores 4 
       --executor-cores 2 
       /home/hadoop-dev/spark-course/streaming/spark-streaming-basic-1.0-SNAPSHOT.jar
    
      spark-shell --master spark://master:7077 --total-executor-cores 4 --executor-cores 2
      */
    object BasicAPITest {
      def main(args: Array[String]) {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // StreamingContext 编程入口
        val ssc = new StreamingContext(sc, Seconds(1))
    
        //数据接收器(Receiver)
        //创建一个接收器(ReceiverInputDStream),这个接收器接收一台机器上的某个端口通过socket发送过来的数据并处理
        val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    
        //数据处理(Process)
        //处理的逻辑,就是简单的进行word count
        val words = lines.flatMap(_.split(" ")).filter(_.contains("exception"))
        val wordPairs = words.map(x => (x, 1))
        //  reduceByKey((a: Int, b: Int) => a + b, new HashPartitioner(10)   指定suffer后分区数量和分区算法(默认是HashPartitioner)
        val wordCounts = wordPairs.repartition(100).reduceByKey((a: Int, b: Int) => a + b, new HashPartitioner(10))
    
        //结果输出(Output)
        //将结果输出到控制台
        wordCounts.print()
    
        //启动Streaming处理流
        ssc.start()
    
        //等待Streaming程序终止
        ssc.awaitTermination()
      }
    }
    

      Join相关API

    import org.apache.spark.{SparkConf, SparkContext}
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    
    /**
      * Created by tangweiqun on 2018/1/6.
      */
    object JoinAPITest {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // Create the context with a 5 second batch size
        val ssc = new StreamingContext(sc, Seconds(5))
    
        val lines1 = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
        val kvs1 = lines1.map { line =>
          val arr = line.split(" ")
          (arr(0), arr(1))
        }
    
    
        val lines2 = ssc.socketTextStream("master", 9997, StorageLevel.MEMORY_AND_DISK_SER)
        val kvs2 = lines2.map { line =>
          val arr = line.split(" ")
          (arr(0), arr(1))
        }
    
        kvs1.join(kvs2).print()
        kvs1.fullOuterJoin(kvs2).print()
        kvs1.leftOuterJoin(kvs2).print()
        kvs1.rightOuterJoin(kvs2).print()
    
        //启动Streaming处理流
        ssc.start()
    
        ssc.stop(false)
    
        //等待Streaming程序终止
        ssc.awaitTermination()
      }
    }
    

      TransformAPI

    import org.apache.spark.rdd.RDD
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.{SparkConf, SparkContext}
    
    /**
      * Created by tangweiqun on 2018/1/6.
      */
    object TransformAPITest {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // Create the context with a 1 second batch size
        val ssc = new StreamingContext(sc, Seconds(5))
    
        val lines1 = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
        val kvs1 = lines1.map { line =>
          val arr = line.split(" ")
          (arr(0), arr(1))
        }
        ///  实时数据
        val path = "hdfs://master:9999/user/hadoop-twq/spark-course/streaming/keyvalue.txt"
        val keyvalueRDD =
          sc.textFile(path).map { line =>
            val arr = line.split(" ")
            (arr(0), arr(1))
          }
        ///  静态数据
        kvs1.transform { rdd =>
          rdd.join(keyvalueRDD)
        } print()
    
        //启动Streaming处理流
        ssc.start()
    
        ssc.stop(false)
    
    
        val lines2 = ssc.socketTextStream("master", 9997, StorageLevel.MEMORY_AND_DISK_SER)
        val kvs2 = lines2.map { line =>
          val arr = line.split(" ")
          (arr(0), arr(1))
        }
        //(将实时数据与静态数据相关联)
        kvs1.transformWith(kvs2, (rdd1: RDD[(String, String)], rdd2: RDD[(String, String)]) => rdd1.join(rdd2))
    
        //等待Streaming程序终止
        ssc.awaitTermination()
      }
    }
    

      WindowAPI

    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.{SparkConf, SparkContext}
    
    /**
      * Created by tangweiqun on 2018/1/6.
      */
    object WindowAPITest {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // Create the context with a 1 second batch size
        val ssc = new StreamingContext(sc, Seconds(1))  ////  用来控制RDD的分区
    
        val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    
        //每过2秒钟,然后显示前20秒的数据
        val windowDStream = lines.window(Seconds(20), Seconds(2))
    
        windowDStream.print()
    
        //启动Streaming处理流
        ssc.start()
    
        //等待Streaming程序终止
        ssc.awaitTermination()
    
        ssc.stop(false)
      }
    }
    

      

    batch interval - DStream产生的间隔,由StreamingContext指定 (这里设置为1s),控制RDD分区
    window length - 窗口的长度,即一个窗口包含的RDD的个数 (这里设置为20s,必须是batch interval的倍数)
    sliding interval - 窗口滑动间隔,执行窗口操作的时间段(这里设置为2s,必须是batch interval的倍数)

    ReduceByKeyAndWindowAPI

    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.{SparkConf, SparkContext}
    
    /**
      * Created by tangweiqun on 2018/1/6.
      */
    object ReduceByKeyAndWindowAPITest {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // Create the context with a 1 second batch size
        val ssc = new StreamingContext(sc, Seconds(1))
    
        ssc.checkpoint("hdfs://master:9999/user/hadoop-twq/spark-course/streaming/checkpoint")
    
        val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    
        val words = lines.flatMap(_.split(" "))
    
        //每5秒中,统计前20秒内每个单词出现的次数
        val wordPair = words.map(x => (x, 1))
    
        val wordCounts =
          wordPair.reduceByKeyAndWindow((a: Int, b: Int) => a + b, Seconds(20), Seconds(5))
    
        wordCounts.print()
    
        //启动Streaming处理流
        ssc.start()
    
        ssc.stop(false)
    
    
    
    
    
    
        //接受一个ReduceFunc和一个invReduceFunc
        //滑动时间比较短,窗口长度很长的场景
        //  需要用checkpoint机制
        val wordCountsOther =
          wordPair.reduceByKeyAndWindow((a: Int, b: Int) => a + b,     
            (a: Int, b: Int) => a - b, Seconds(60), Seconds(2))
    
        wordCountsOther.checkpoint(Seconds(12)) //窗口滑动间隔的5到10倍
    
        wordCountsOther.print()
    
        ssc.start()
    
    
    
        //过滤掉value = 0的值
        words.map(x => (x, 1)).reduceByKeyAndWindow((a: Int, b: Int) => a + b,
          (a: Int, b: Int) => a - b,
          Seconds(30), Seconds(10), 4,
          (record: (String, Int)) => record._2 != 0)
    
        //等待Streaming程序终止
        ssc.awaitTermination()
      }
    }
    

      

    1、分别对rdd2和rdd3进行reduceByKey
    2、取在window内的rdd进行union,生成unionRDD
    3、对unionRDD再次进行reduceByKey
    (不需要 checkpoint机制,不需要依赖)
    1、将两个window的所有rdd进行cogroup
    (需要依赖前面的RDD,因此需要checkpoint机制)
    2、对old rdds对应的value应用invReduceF
    3、对new rdds对应的value应用reduceF
    localCheckpoint() 存储在内存和磁盘中,但数据不可靠
    checkpoint() 存储在HDFS中去,数据可靠,提高容错性能,需要设置文件目录
     
    UpdateStateByKeyAPI
    1、updateStateByKey,这个API根据一个key的之前的状态和新的接收到的数据来计算并且更新新状态。使用这个API需要做两步:第一就是为每一个key定义一个初始状态,这个状态的类型可以实任意类型;第二就是定义一个更新状态的函数,这个函数根据每一个key之前的状态和新接收到的数据计算新的状态。
     
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming.{Seconds, StreamingContext}
    import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
    
    import scala.collection.mutable.ListBuffer
    
    
    
    object UpdateStateByKeyAPITest {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // Create the context with a 1 second batch size
        val ssc = new StreamingContext(sc, Seconds(1))
    
        ssc.checkpoint("hdfs://master:9999/user/hadoop-twq/spark-course/streaming/checkpoint")
    
        val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    
        val words = lines.flatMap(_.split(" "))
    
        val wordsDStream = words.map(x => (x, 1))
        ///values: Seq[Int]   在一定的时间段内收到的  当前key在这个时间段内收集到的value,
        /// currentState: Option[Int]  当前key的状态
        wordsDStream.updateStateByKey(
          (values: Seq[Int], currentState: Option[Int]) => Some(currentState.getOrElse(0) + values.sum)).print()
    
        //启动Streaming处理流
        ssc.start()
    
        ssc.stop(false)
    
    
    
        //updateStateByKey的另一个API
        ///  接收的函数是Iterator  三元组    String Key   Seq[Int]  接收到的数据   Option[Int]) Key当前的状态
        wordsDStream.updateStateByKey[Int]((iter: Iterator[(String, Seq[Int], Option[Int])]) => {
          val list = ListBuffer[(String, Int)]()
          while (iter.hasNext) {
            val (key, newCounts, currentState) = iter.next
            val state = Some(currentState.getOrElse(0) + newCounts.sum)
    
            val value = state.getOrElse(0)
            if (key.contains("error")) {
              list += ((key, value)) // Add only keys with contains error
            }
          }
          list.toIterator
        }, new HashPartitioner(4), true).print()
    
        ssc.start()
    
    
        //等待Streaming程序终止
        ssc.awaitTermination()
      }
    }
    

      

    MapWithStateAPI

    mapWithState,这个API的功能和updateStateByKey是一样的,只不过在性能方面做了很大的优化,这个函数对于没有接收到新数据的key是不会计算新状态的,而updateStateByKey是会重新计算任何的key的新状态的,由于这个原因所以导致mapWithState可以处理的key的数量比updateStateByKey多10倍多,性能也比updateStateByKey快很多。 支持促使状态mapWithState还支持timeout API
    import org.apache.spark.storage.StorageLevel
    import org.apache.spark.streaming._
    import org.apache.spark.{SparkConf, SparkContext}
    
    
    object MapWithStateAPITest {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf().setAppName("NetworkWordCount")
        val sc = new SparkContext(sparkConf)
    
        // Create the context with a 1 second batch size
        val ssc = new StreamingContext(sc, Seconds(5))
    
        ssc.checkpoint("hdfs://master:9999/user/hadoop-twq/spark-course/streaming/checkpoint")
    
        val lines = ssc.socketTextStream("master", 9998, StorageLevel.MEMORY_AND_DISK_SER)
    
        val words = lines.flatMap(_.split(" "))
    
        val wordsDStream = words.map(x => (x, 1))
    
        val initialRDD = sc.parallelize(List(("dummy", 100L), ("source", 32L)))
        // currentBatchTime : 表示当前的Batch的时间
        // key: 表示需要更新状态的key
        // value: 表示当前batch的对应的key的对应的值
        // currentState: 对应key的当前的状态
        val stateSpec = StateSpec.function((currentBatchTime: Time, key: String, value: Option[Int], currentState: State[Long]) => {
          val sum = value.getOrElse(0).toLong + currentState.getOption.getOrElse(0L)
          val output = (key, sum) 
          if (!currentState.isTimingOut()) {
            currentState.update(sum)
          }
          Some(output)
        }).initialState(initialRDD).numPartitions(2).timeout(Seconds(30)) //timeout: 当一个key超过这个时间没有接收到数据的时候,这个key以及对应的状态会被移除掉
    
        val result = wordsDStream.mapWithState(stateSpec)
    
        result.print()
        //  从一开始显示所有数据,包含初始值
        result.stateSnapshots().print()
    
        //启动Streaming处理流
        ssc.start()
    
        ssc.stop(false)
    
    
        //等待Streaming程序终止
        ssc.awaitTermination()
      }
    }
    

      

  • 相关阅读:
    css常用小知识点汇总(一)
    TweenMax的GSAP(GreenSock动画平台)GSAP,专业的Web动画库
    前端node面试题之---对比JS和NodeJS的区别
    Math.min() Math.max() Math.min().apply() Math.max() .apply()该如何使用???
    zrender的线性渐变
    webkit内核的浏览器常见7种分别是..
    node创建项目,要ejs模板引擎,不要jade怎么办?
    【正则】——深入正则表达式,手写常用正则表单验证
    【bug】—— ios scroll 滚动穿透
    【bug】—— H5页面在 ios 端滑动不流畅的问题
  • 原文地址:https://www.cnblogs.com/tesla-turing/p/11488191.html
Copyright © 2020-2023  润新知