• [HEOI2013]SAO(树上dp,计数)


    [HEOI2013]SAO

    (这写了一个晚上QAQ,可能是我太蠢了吧.)

    题目说只有(n-1)条边,然而每个点又相互联系.说明它的结构是一个类似树的结构,但是是有向边连接的,题目问的是方案个数,那么首先想到的肯定是树上dp.
    但是这题有向边,从一个点出发,不一定可以遍历整棵树.那么肯定要对每条边建反边,打个标记分类讨论.
    解决了建模的问题,接下来就是怎么dp了.
    容易发现这个其实就是求这个"类树形图"的拓扑排序方案数,然而我们知道拓扑排序的方案计数是个NP问题,用状压解决,这题有"类树"这个优良特性.所以我们要另辟蹊径.
    我们设状态的时候要保证这个状态尽量可以描述这个状态的特点,从而协助我们转移.考虑状态(dp[u][i])表示u和它的子树的点组成的满足拓扑关系的排列的中u点在第i位上.这样以来,我们就根据这个状态知道了,u的位置,知道了u之前有多少个点,知道u之后有多少个点,我们还可以通过它和它子树的节点数推断要在一些范围插入一些点,是不是很棒~
    考虑怎么转移呢?
    首先是边界条件,一个点(没有子树)单独站在第一位的方案数是1.
    再就是考虑合并子树信息.先讨论u优先于v的情况.
    最开始,只有1个点,此时加入第一棵子树,这个时候(dp[u][i])描述的状态到处都是空位,出了u站在i位置,其他的都随便这棵子树里的点乱站.我们考虑从(dp[v][j])转移而来,于是就是u和v的位置固定了,其他的可以随意填充,其他的点有多少个呢?(sz[v])吗?
    等等好像还有一些限制! u要先于v! 那么v在合并后的排名必须在u之后,那么v在之前子树的排名最低最低也是(k-i+1)名,这样v就刚好在u后面一位.那么其他的(k-1)个点就随意分布u之前的(i-1)个空位之间,剩余的(sz[u]-k)个点在(u)之后的(sz[u]-sz[v]-k)个空位里,那么状态转移方程就是:

    [dp[u][i]=sum_{k=1}^{min(i,sz[u]-sz[v]+1)}dp[u][k]*C_{sz[u]-sz[v]-k}^{sz[u]-k}*C_{i-1}^{k-1}sum_{j=k-u+1}^{sz[v]}dp[v][j] ]

    如果是v先于u再像上面那样分析就可以了.

    #include<bits/stdc++.h>
    #define maxn 1005
    #define mod 1000000007
    #define ll long long
    using namespace std;
    int cnt,n,T,ans,sum[maxn][maxn];
    //dp[u][i]表示u节点和它的子树,组成的拓扑排列中,u的拓扑序
    int c[maxn][maxn],dp[maxn][maxn],sz[maxn],vis[maxn];
    int head[maxn],nxt[maxn<<1],w[maxn<<1],to[maxn<<1];
    int C(int n,int m){if(n<0||m<0||n<m)return 0;return c[n][m];}
    void qm(int &x,int y){x+=y;if(x>=mod)x-=mod;}
    void add(int u,int v,int ww)
    {
    	nxt[++cnt]=head[u];head[u]=cnt;
    	to[cnt]=v;w[cnt]=ww;
    }
    void init()
    {
    	for(int i=0;i<=1000;i++)c[i][0]=1;
    	for(int i=1;i<=1000;i++)
    		for(int j=1;j<=i;j++)c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
    }
    void clear()
    {
    	memset(dp,0,sizeof(dp));memset(sz,0,sizeof(sz));
    	memset(vis,0,sizeof(vis));memset(sum,0,sizeof(sum));
    	memset(head,0,sizeof(head));cnt=0;
    }
    void dfs(int u)
    {
    	vis[u]=1;sz[u]=1;dp[u][1]=1;
    	for(int ii=head[u];ii;ii=nxt[ii])
    	{
    		int v=to[ii];if(vis[v])continue;
    		dfs(v);sz[u]+=sz[v];
    		if(w[ii])//u优先于v
    		{
    			for(int i=sz[u],s=0;i>=1;i--,dp[u][i+1]=s,s=0)//填表法合并子树信息,枚举u的拓扑序
    				for(int k=1;k<=min(sz[u]-sz[v],i);k++)//枚举u和其它已经合并到u上的子树的状态
    				{
    					if(sz[v]<=i-k)continue;
    					int tt=(sum[v][sz[v]]-sum[v][i-k]+mod)%mod;
    					qm(s,(ll)dp[u][k]*tt%mod*C(i-1,k-1)%mod
    					   *C(sz[u]-i,sz[u]-sz[v]-k)%mod);
    					/*
    					  暴力转移:
    					  for(int j=i-k+1;j<=sz[v];j++)
                            qm(sum,(ll)dp[u][k]*dp[v][j]%mod
    						*C(i-1,k-1)%mod*C(sz[u]-i,sz[u]-sz[v]-k)%mod);
    					 */
    				}
    		}
    		else//v优先于u
    		{
    			for(int i=sz[u],s=0;i>=1;i--,dp[u][i+1]=s,s=0)
    				for(int k=1;k<=min(sz[u]-sz[v],i-1);k++)
    				{
    					int tt=sum[v][min(sz[v],i-k)];
    					qm(s,(ll)dp[u][k]*tt%mod*C(i-1,k-1)%mod
    					   *C(sz[u]-i,sz[u]-sz[v]-k)%mod);
    				}
    		}
    	}
    	for(int i=1;i<=sz[u];i++)//前缀和优化
    		sum[u][i]=(sum[u][i-1]+dp[u][i])%mod;
    }
    int main()
    {
    	init();cin>>T;
    	while(T--)
    	{
    		char ty;clear();cin>>n;
    		for(int i=1,u,v;i<n;i++)//u优先v,连1边
    			cin>>u>>ty>>v,v++,u++,add(u,v,ty=='<'),add(v,u,ty=='>');
    		dfs(1);ans=0;
    		for(int i=1;i<=n;i++)ans+=dp[1][i],ans%=mod;
    		printf("%d
    ",ans);
    	}
    	return 0;
    }
    
    
  • 相关阅读:
    CF1153C. Serval and Parenthesis Sequence
    LGOJ P2048 [NOI2010]超级钢琴
    BZOJ4551: [Tjoi2016&Heoi2016]树
    性能分析 | Java进程CPU占用高导致的网页请求超时的故障排查
    SQL优化 | sql执行过长的时间,如何优化?
    性能优化 | JVM性能调优篇——来自阿里P7的经验总结
    性能优化 | 线上百万级数据查询接口优化过程
    性能分析 | 线上CPU100%排查
    性能测试 | Web端性能测试
    自动化测试 | 好用的自动化测试工具Top 10
  • 原文地址:https://www.cnblogs.com/terribleterrible/p/9844044.html
Copyright © 2020-2023  润新知