• A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.


    原项目链接:https://github.com/chiphuyen/stanford-tensorflow-tutorials/tree/master/assignments/chatbot

    一个使用序列的神经聊天者使用注意解码器对序列模型进行排序。 这是一个功能齐全的chatbot。

    这是基于Google 翻译 Tensorflow 模型 https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/

    Chip Huyen 等人的序列到序列模型(2014)

    由Chip Huyen创建为作业3的起始代码,CS 20SI 课程:“用于深度学习研究的 TensorFlow ” cs20si.stanford.edu

    详细的任务讲义和培训时间的信息可以在 http://web.stanford.edu/class/cs20si/assignments/a3.pdf 找到

    A neural chatbot using sequence to sequence model with attentional decoder. This is a fully functional chatbot.

    This is based on Google Translate Tensorflow model https://github.com/tensorflow/models/blob/master/tutorials/rnn/translate/

    Sequence to sequence model by Cho et al.(2014)

    Created by Chip Huyen as the starter code for assignment 3, class CS 20SI: "TensorFlow for Deep Learning Research" cs20si.stanford.edu

    The detailed assignment handout and information on training time can be found at http://web.stanford.edu/class/cs20si/assignments/a3.pdf

    Sample conversation

    HUMAN ++++ hi
    BOT ++++ hi . what ' s your name ?
    HUMAN ++++ i'm chip
    BOT ++++ please .
    HUMAN ++++ please what?
    BOT ++++ i don ' t know what to say .
    HUMAN ++++ where are you from?
    BOT ++++ california .
    HUMAN ++++ do you like california?
    BOT ++++ i ' m okay .
    HUMAN ++++ i like california a lot
    BOT ++++ of what ?
    HUMAN ++++ i live here
    BOT ++++ and what is it ?
    HUMAN ++++ california
    BOT ++++ i don ' t know what to say .
    HUMAN ++++ i'm a student here
    BOT ++++ and get it out of here .
    HUMAN ++++ what do you like to do in your free time?
    BOT ++++ and what about the gun ?
    HUMAN ++++ do you have a gun?
    BOT ++++ yes .
    HUMAN ++++ you're dangerous!
    BOT ++++ i ' m not .
    HUMAN ++++ do you go hunting?
    BOT ++++ i can do .
    HUMAN ++++ what do you hunt?
    BOT ++++ virgin .
    HUMAN ++++ that's very bad
    BOT ++++ and you in love ?
    HUMAN ++++ no i'm not
    BOT ++++ please - -
    HUMAN ++++ okay, i am
    BOT ++++ and you are good .
    HUMAN ++++ yeah i am good too.
    BOT ++++ good good to you .
    HUMAN ++++ are you in love?
    BOT ++++ i ' m ready .
    HUMAN ++++ ready for what?
    BOT ++++ for what ?
    HUMAN ++++ for what?
    BOT ++++ i don ' t know what to say .
    HUMAN ++++ tell me
    BOT ++++ i can do it .
    HUMAN ++++ okay, tell me what you're ready for
    BOT ++++ i ' m doing you .
    HUMAN ++++ no you're not
    BOT ++++ please !
    HUMAN ++++ this is a strange conversation
    BOT ++++ i don ' t know what to say .
    HUMAN ++++ are you a guy?
    BOT ++++ of what ?
    HUMAN ++++ are you a boy?
    BOT ++++ i ' m fine .
    HUMAN ++++ are you a man?
    BOT ++++ i ' m a little .
    HUMAN ++++ what's your name?
    BOT ++++ chris -
    HUMAN ++++ chris who?
    BOT ++++ cornelius .
    HUMAN ++++ so i guess you're a guy.
    BOT ++++ i am .
    HUMAN ++++ okay
    BOT ++++ okay ?
    HUMAN ++++ do you have a girlfriend?
    BOT ++++ i ' m sure .
    HUMAN ++++ what's her name?
    BOT ++++ let ' s talk about something else .
    See output_convo.txt for more sample conversations.

    Usage

    Step 1: create a data folder in your project directory, download the Cornell Movie-Dialogs Corpus from https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html Unzip it

    Step 2: python data.py
    This will do all the pre-processing for the Cornell dataset.

    Step 3: python chatbot.py --mode [train/chat]
    If mode is train, then you train the chatbot. By default, the model will restore the previously trained weights (if there is any) and continue training up on that.

    If you want to start training from scratch, please delete all the checkpoints in the checkpoints folder.

    If the mode is chat, you'll go into the interaction mode with the bot.

    By default, all the conversations you have with the chatbot will be written into the file output_convo.txt in the processed folder. If you run this chatbot, I kindly ask you to send me the output_convo.txt so that I can improve the chatbot. My email is huyenn@stanford.edu

    If you find the tutorial helpful, please head over to Anonymous Chatlog Donation to see how you can help us create the first realistic dialogue dataset.

    Thank you very much!

  • 相关阅读:
    使用git将本地代码上传到gitee【码云】
    .net设置实例字段在请求参数中不展示
    Springboot 操作Elasticsearch 方式一 【spring-data-elasticsearch】
    Java工具类 (3)------>WordUtils------>利用Poi根据模板生成新的word文档
    Java工具类 (2)------>TreeUtils------>树形结构生成类
    Java工具类 (1)------>IPUtils------>获取用户登录IP地址
    Idea安装MyBatisCodeHelper-Pro插件破解版以及去除mybatis的mapper.xml文件背景颜色
    Python 线程队列 LifoQueue – LIFO
    Python 线程队列 Queue – FIFO
    Python 线程障碍对象 Barrier
  • 原文地址:https://www.cnblogs.com/tensorflownews/p/7434887.html
Copyright © 2020-2023  润新知