• 计算几何模版


    此模板包含了一些基本简单的二维几何问题,

    1三角形外接圆            2三角形内切圆

    3过圆外某点切线的角度    4过某条直线外一点半径为r的圆   

    5和两条相交直线相切的半径为r的圆         6和两个相离的圆相切的圆

     UVA12304

    1.计算向量点积, 叉积, 长度, 夹角, 向量的旋转(逆时针), 向量的单位法线 

    2.计算两点距离, 点到直线距离,两直线交点, 点到线段距离, 点在直线的投影,将直线AB沿法线方向平移d得到的直线EF 

    3. 圆与直线的交点(相离,没有交点, 相切一个交点, 相交两个交点), 计算两圆相交(返回交点和个数), 过某点圆的切线(一条或两条), 两圆的切线(相离,内切,内含,外切)

    //Autor LJH;
    //
    #include <cstdio>
    #include <iostream>
    #include <cmath>
    #include <cstdlib>
    #include <cstring>
    #include <vector>
    #include <algorithm>
    using namespace std;
     
    #define PI  acos(-1)
    const double eps = 1e-6;
    
    struct Point
    {
        double x, y;
        Point (double x = 0, double y = 0) : x(x), y(y) { } //构造函数, 方便代码书写
    };
    typedef Point myvector;
    
    // 向量 + 向量 = 向量
    myvector operator + (myvector A, myvector B) { return myvector(A.x + B.x, A.y + B.y); }
     
    // 点 - 点 = 向量
    myvector operator - (Point A, Point B) { return myvector(A.x - B.x, A.y - B.y); }
     
    //向量 * 数 = 向量
    myvector operator * (myvector A, double p) { return myvector(A.x * p, A.y * p); }
     
    //向量/数 = 向量
    myvector operator / (myvector A, double p) { return myvector(A.x / p, A.y / p); }
     
    // 小于号
    bool operator < (const Point & a, const Point & b)
    {
        if (a.x == b.x) return a.y < b.y;
        return a.x < b.x;
    }
     
    //比较
    int dcmp(double x)
    {
        if(fabs (x) < eps) return 0;
        else return x < 0 ? -1 : 1;
    }
     
    // 恒等于号
    bool operator ==  (const Point & a, const  Point  & b)
    {
        return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
    }
     
    //计算向量 A B 的点积, A*B = |A| * |B| * cosß
    double Dot (myvector A, myvector B) { return A.x*B.x + A.y*B.y; }
     
    //计算向量 A 的长度
    double Length (myvector A) { return sqrt (Dot(A, A)); }
     
    //返回弧度, 计算向量 A,B 的夹角,是cos, 有公式
    double Angle (myvector A, myvector B)
    { return acos(Dot(A, B) / Length(A) / Length(B)); }
     
      
     
    // 计算叉积,AxB = |A| * |B| * sinß, 得到的是与这两个向量垂直的向量
    double Cross(myvector A, myvector B) { return A.x * B.y - A.y * B.x; }
    //计算三角形面积
    double Area2(Point A, Point B, Point C) { return fabs(Cross(B - A, C - A)); }
     
    //计算两点距离
    double DistancePoint(Point A, Point B) { return sqrt((A.x-B.x)*(A.x-B.x) + (A.y-B.y)*(A.y-B.y)); }
     
    // 计算向量旋转后变成的另一个向量, rad 是弧度
    //公式 x1 = x * cosß - y * sinß, y1 = x * sinß + y * cosß;
    myvector Rotate(myvector A, double rad)
    {
        return myvector(A.x * cos(rad) - A.y * sin(rad),
                      A.x * sin(rad) + A.y * cos(rad));
    }
     
    //计算向量的单位法线, 在调用前确保 A 不是零向量
    myvector Normal(myvector A)
    {
        double L = Length(A);
        return myvector(-A.y / L,  A.x / L);
    }
     
    //直线可以用直线上一点p1, 和方向向量V表示, 即 向量P = 点p1 + V;
    //计算两直线的 交点 , 调用前确保两直线有交点
    Point  GetLineInstersection(Point P, myvector v, Point Q, myvector w)
    {
        myvector u = P - Q;
        double t = Cross(w, u) / Cross(v, w);
        return P + v * t;
    }
     
    //点到直线的距离
    double DistanceToLine(Point P, Point A, Point B)
    {
        myvector v1 = B - A, v2 = P - A;
        return fabs(Cross(v1, v2) / Length(v1));
    }
     
    // 点到线段的距离, 有两种可能, 一种点在线段上方, 这时候算垂直, 不在线段上方;
    double DistanceToSegment(Point P, Point A, Point B)
    {
        if( A == B) return Length(P-A); //如果线段是一个点
        myvector v1 = B - A, v2 = P - A, v3 = P - B;
        if(dcmp(Dot(v1, v2)) < 0)      return Length(v2);
        else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
        else return fabs(Cross(v1, v2)) / Length(v1);
     
    }
     
    //计算点在直线上投影的点
    Point GetLineProjectoin(Point P, Point A, Point B)
    {
        myvector v = B - A;
        return A + v * (Dot(v, P-A) / Dot(v, v));
    }
     
    struct Line  //线,由
    {
        Point v, p, e;
        Point point(double t)
        {
           return (p + v * t);
        }
    };
     
    struct Circle
    {
        Point c;
        double r;
        Circle(Point _c=0,double _r=0):c(_c),r(_r){}
        Point point(double a)///根据圆心角算圆上的点
        {
            return Point(c.x+cos(a)*r,c.y+sin(a)*r);
        }
    };
    
    //返回向量的极角,极坐标系, 有时候需要按照极角排序
    double PolarAngle(myvector V) {return atan2(V.y, V.x);}
     
    //将直线AB沿法线方向平移d得到的直线EF,
    myvector move_d(Point A, Point B, double d, Line& L)
    {
        myvector C = B - A;
        C = C/Length(C);
        C = Rotate(C, PI/2);
        L.p = A + C * d;
        L.e = B + C * d;
        L.v = L.e - L.p;
        return (L.v);
    }
     
    //圆与直线的交点, 相离,没有交点, 相切一个交点, 相交两个交点
    int getLineCircleInteresection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol)
    {
        //printf("##%f %f %f %f
    ", L.p.x, L.p.y, L.e.x, L.e.y);
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a*a + c*c, f = 2 * (a*b + c*d), g = b*b + d*d - C.r*C.r;
        double delta = f*f - 4*e*g;
       // printf("delta = %.16f, esp = %.16f
    ", delta, eps);
        if(dcmp(delta) < 0)
        {
           return 0;
        }
        if(dcmp(delta) == 0)
        {
            t1 = t2 = -f / (2 * e);
            sol.push_back(L.point(t1));
            return 1;
        }
        //相交
        t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(L.point(t1));
        t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(L.point(t2));
        return 2;
    }
     
    //计算两圆相交
    int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point> &sol)
    {
        double d = Length(C1.c - C2.c);
        if(dcmp(d) == 0)
        {
            if(dcmp(C1.r - C2.r) == 0) return -1; //两圆重合
            return -2;//圆心一样,小圆在大圆内
        }
        if(dcmp(C1.r + C2.r - d) < 0) return 0; //相离
        if(dcmp(fabs(C1.r - C2.r) - d) > 0) return -3;//圆心不同,大圆在小圆内
        double a = PolarAngle(C2.c - C1.c);//计算向量C1C2的极角
        double da = acos((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));
        //C1C2到C1P1的角
        Point p1 = C1.point(a - da), p2 = C1.point(a + da);
        sol.push_back(p1);
        if(p1 == p2) return 1;
        sol.push_back(p2);
        return 2;
    }
    
    //过点p到圆 C 的切线,v[i]是第i条切线的向量,返回切线条数
    int getTangents(Point p, Circle C, myvector* v)
    {
        myvector u = C.c - p;
        double dis = Length(u);
        if (dis < C.r)  return 0;
        else if (dcmp(dis - C.r) == 0)
        {
            v[0] = Rotate(u, PI / 2.0);
            return 1;
        }
        else
        {
            double ang = asin(C.r / dis);
            v[0] = Rotate(u, -ang);
            v[1] = Rotate(u, +ang);
            return 2;
        }
    }
     
    //两圆的切线条数, (1)重合,无数条,(2)两圆内含没有公共点没有切线,(3)两圆内切,有1条,
    //(4)两圆相交有2条, (5)两圆外切,3条, (6)两圆相离,4条公切线
    //返回切线条数, a[i],b[i]分别是第i条切线在圆A和B的切点
    int getTangentsCircle(Circle A, Circle B, Point* a, Point* b)
    {
        int cnt = 0;
        if(A.r < B.r)  //swap
        {
            Circle temp; Point *temp1 = NULL;
            A = temp; A = B; B = temp;
            a = temp1; a = b; b = temp1;
        }
        int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
        int rdiff = A.r - B.r;
        int rsum = A.r + B.r;
        if(d2 < rdiff * rdiff) return 0; // 内含
        double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
        if(d2 == 0 && A.r == B.r) return -1; //无限多条
        if(d2 == rdiff * rdiff)
        {
            a[cnt] = A.point(base);
            b[cnt] = B.point(base);
            cnt++;
        }
        //有外共切线
        double ang = acos((A.r - B.r) / sqrt(d2));
        a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
        a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
        if(d2 == rsum * rsum) //一条内公切线
        {
            a[cnt] = A.point(base); b[cnt] = B.point(PI + base); cnt++;
        }
        else if(d2 > rsum * rsum)
        {
            double ang = acos(A.r + B.r) / sqrt(d2);
            a[cnt] = A.point(base + ang); b[cnt] = B.point(PI + base + ang); cnt++;
            a[cnt] = A.point(base - ang); b[cnt] = B.point(PI + base - ang); cnt++;
        }
        return cnt;
    }
    
    //两圆相交的面积,返回面积
    double CircleInterSectionArea(Circle A, Circle B, vector<Point>&sol)
    {
        sol.clear();
        int f = getCircleCircleIntersection(A, B, sol);
        if(f == 0 || f == 1) return 0;//相离, 相切
        if(f < 0) return (min(A.r,B.r)*min(A.r,B.r)*PI);//内含
        Point p3 = sol[0];
        double areatri = Area2(A.c, B.c, p3);
        double ang1 = Angle(sol[0]-A.c, B.c-A.c);
        double ang2 = Angle(sol[0]-B.c, A.c-B.c);
        double areacir1 = A.r * A.r * ang1;
        double areacir2 = B.r * B.r * ang2;
        return (areacir1+areacir2-areatri);
        
    }
    
    bool cmp(Point A, Point B)
    {
        if(A.x == B.x) return A.y < B.y;
        return A.x < B.x;
    }
     
    //三角形外接圆
    void FUN1(double x1, double y1, double x2, double y2, double x3, double y3);
    //三角形内切圆
    void FUN2(double x1, double y1, double x2, double y2, double x3, double y3);
    //过圆外某点切线的角度
    void FUN3(double xc, double yc, double r, double xp, double yp);
    //过某条直线外一点半径为r的圆
    void FUN4(double xp, double yp, double x1, double y1, double x2, double y2, double r);
    //和两条相交直线相切的半径为r的圆
    void FUN5(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, double r);
    //和两个相离的圆相切的圆
    void FUN6(double x1, double y1, double r1, double x2, double y2, double r2, double r);
     
    int main()
    {
        //freopen("1.txt", "r", stdin);
        /*double a1, b1, r1, a2, b2, r2;
        vector<Point> sol;
        while(~scanf("%lf %lf %lf %lf %lf %lf", &a1, &b1, &r1, &a2, &b2, &r2))
        {
            Circle a, b;
            Point p1, p2;
            p1.x = a1; p1.y = b1; a.c = p1; a.r = r1;
            p2.x = a2; p2.y = b2; b.c = p2; b.r = r2;
            printf("%.3f
    ", CircleInterSectionArea(a, b, sol));
        }*/
        char s[50], s1[50] = "CircumscribedCircle", s2[50] = "InscribedCircle", s3[50] = "TangentLineThroughPoint",
        s4[50] = "CircleThroughAPointAndTangentToALineWithRadius", s5[50] = "CircleTangentToTwoLinesWithRadius",
        s6[50] = "CircleTangentToTwoDisjointCirclesWithRadius";
        while(~scanf("%s", s))
        {
           if(!strcmp(s,s1))
           {
               double x1, y1, x2, y2, x3, y3;
               cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3;
               FUN1(x1, y1, x2, y2, x3, y3);
           }
           else if(!strcmp(s, s2))
           {
               double x1, y1, x2, y2, x3, y3;
               cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3;
               FUN2(x1, y1, x2, y2, x3, y3);
           }
           else if(!strcmp(s,s3))
           {
               double xc, yc, r, xp, yp;
               cin >> xc >> yc >> r >> xp >> yp;
               FUN3(xc, yc, r, xp, yp);
           }
           else if(!strcmp(s,s4))
           {
               double xp, yp, x1, y1, x2, y2, r;
               cin >> xp >> yp >> x1 >> y1 >> x2 >> y2 >> r;
               FUN4( xp, yp, x1, y1, x2, y2, r);
           }
           else if(!strcmp(s,s5))
           {
               double x1, y1, x2, y2, x3, y3, x4, y4, r;
               cin >> x1 >> y1 >> x2 >> y2 >> x3 >> y3 >> x4 >> y4 >> r;
               FUN5(x1, y1, x2, y2, x3, y3, x4, y4, r);
           }
           else if(!strcmp(s,s6))
           {
               double x1, y1, r1, x2, y2, r2, r;
               cin >> x1 >> y1 >> r1 >> x2 >> y2 >> r2 >> r;
               FUN6(x1, y1, r1, x2, y2, r2, r);
           }
           getchar();
        }
        return 0;
    }
     
    void FUN1(double x1, double y1, double x2, double y2, double x3, double y3)
    {//三角形外接圆
        Point A, B, C, D, E, F;
        myvector AB, BC, DE, DF;
        A.x = x1; A.y = y1; B.x = x2; B.y = y2; C.x = x3; C.y = y3;
        E.x = (A.x + B.x)/2.0; E.y = (A.y + B.y)/2.0;
        F.x = (B.x + C.x)/2.0; F.y = (B.y + C.y)/2.0;
        AB = B - A;       BC = C - B;
        DE = Normal(AB);  DF = Normal(BC);
        D = GetLineInstersection(E, DE, F, DF);
        double r = DistancePoint(B, D);
        printf("(%f,%f,%f)
    ", D.x, D.y, r);
        return;
    }
     
    void FUN2(double x1, double y1, double x2, double y2, double x3, double y3)
    {//三角形内切圆
        Point A, B, C;
        A.x = x1; A.y = y1; B.x = x2; B.y = y2; C.x = x3; C.y = y3;
        myvector v11 = B - A;
        myvector v12 = C - A;
        myvector v21 = A - B;
        myvector v22 = C - B;
        double ang1 = (PolarAngle(v11) + PolarAngle(v12)) / 2.0;
        double ang2 = (PolarAngle(v21) + PolarAngle(v22)) / 2.0;
        myvector vec1 = myvector(cos(ang1), sin(ang1));
        myvector vec2 = myvector(cos(ang2), sin(ang2));
        Point O = GetLineInstersection(A, vec1, B, vec2);
        double r = DistanceToLine(O, A, B);
        printf("(%f,%f,%f)
    ", O.x, O.y, r);
    }
     
    void FUN3(double xc, double yc, double r, double xp, double yp)
    {//过圆外某点切线的角度
        myvector vc[5];
        int len = getTangents(Point(xp, yp), Circle(Point(xc, yc), r), vc);
        double tmp[5];
        for (int i = 0; i < len; ++i)
        {
            double ang = PolarAngle(vc[i]);
            if (ang < 0) ang += PI;
            ang = fmod(ang, PI);
            tmp[i] = ang * 180 / PI;
        }
        sort(tmp, tmp + len);
        printf("[");
        for (int i = 0; i < len; ++i)
        {
            printf("%.6lf", tmp[i]);
            if (i != len - 1) printf(",");
        }
        printf("]
    ");
        return;
    }
     
    void FUN4(double xp, double yp, double x1, double y1, double x2, double y2, double r)
    {//过某条直线外一点半径为r的圆
        Line L1, L2;
        Point X, Y, P, Q, pp[10];
        double t1, t2;
        int k = 0;
        vector<Point>sol, sol2;
        X.x = x1; X.y = y1; Y.x = x2; Y.y = y2; P.x = xp; P.y = yp;
        Circle C(P, r);
      
        move_d(X, Y, -r, L1);
        move_d(X, Y, r, L2);
        int f = getLineCircleInteresection(L1, C, t1, t2, sol),
           f1 = getLineCircleInteresection(L2, C, t1, t2, sol2);
        printf("[");
        if(f == 1)
        {
           pp[k++] = sol[0];
        //  printf("(%f,%f)", sol[0].x, sol[0].y);
        }
        if(f == 2)
        {
           pp[k++] = sol[0]; pp[k++] = sol[1];
        //  printf("(%f,%f),(%f,%f)", sol[0].x, sol[0].y, sol[1].x, sol[1].y);
        }
      
        if(f1 == 1)
        {
           pp[k++] = sol2[0];
        //  if(f != 0) printf(",");
        //  printf("(%f,%f)", sol2[0].x, sol2[0].y);
        }
        if(f1 == 2)
        {
           pp[k++] = sol2[0];
           pp[k++] = sol2[1];
           //if(f != 0) printf(",");
           //printf("(%f,%f),(%f,%f)", sol2[0].x, sol2[0].y, sol2[1].x, sol2[1].y);
        }
        sort(pp,pp+k);
        for(int i=0;i<k;i++)
        {
           printf("(%f,%f)", pp[i].x, pp[i].y);
           if(i != k-1) printf(",");
        }
        printf("]
    ");
        return;
    }
     
    void FUN5(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, double r)
    {//和两条相交直线相切的半径为r的圆
        Line L1, L2;
        Point A, B, C, D, P, pp[10];
        int k = 0;
        A.x = x1; A.y = y1; B.x = x2; B.y = y2; C.x = x3; C.y = y3; D.x = x4; D.y = y4;
        move_d(A, B, r, L1); move_d(C, D, r, L2); P = GetLineInstersection(L1.p, L1.v, L2.p, L2.v);
        pp[k++] = P;
    //  printf("[(%f,%f),", P.x, P.y);
        move_d(A, B, r, L1); move_d(C, D, -r, L2); P = GetLineInstersection(L1.p, L1.v, L2.p, L2.v);
        pp[k++] = P;
    //  printf("(%f,%f),", P.x, P.y);
        move_d(A, B, -r, L1); move_d(C, D, r, L2); P = GetLineInstersection(L1.p, L1.v, L2.p, L2.v);
        pp[k++] = P;
    //  printf("(%f,%f),", P.x, P.y);
        move_d(A, B, -r, L1); move_d(C, D, -r, L2); P = GetLineInstersection(L1.p, L1.v, L2.p, L2.v);
        pp[k++] = P;
    //  printf("(%f,%f)]
    ", P.x, P.y);
        sort(pp, pp+k);
        printf("[");
        for(int i=0;i<k;i++)
        {
           printf("(%f,%f)", pp[i].x, pp[i].y);
           if(i != k-1) printf(",");
        }
        printf("]
    ");
        return;
    }
     
    void FUN6(double x1, double y1, double r1, double x2, double y2, double r2, double r)
    {//和两个相离的圆相切的圆
        Point a, b, c, pp[10];
        int k = 0;
        a.x = x1; a.y = y1;b.x = x2; b.y = y2;
        Circle A(a,r1), B(b,r2);
        Circle C(a,r1+r), D(b,r2+r);
        vector<Point>sol;
        int t = getCircleCircleIntersection(C, D, sol);
        if(t == 1) pp[k++] = sol[0]; //printf("[(%f,%f)]
    ", sol[0].x, sol[0].y);
        else if(t == 2)
        {
            pp[k++] = sol[0]; pp[k++] = sol[1]; //printf("[(%f,%f),(%f,%f)]
    ", sol[0].x, sol[0].y,sol[1].x, sol[1].y);
        }
        sort(pp, pp+k);
        printf("[");
        for(int i=0;i<k;i++)
        {
           printf("(%f,%f)", pp[i].x, pp[i].y);
           if(i != k-1) printf(",");
        }
        printf("]
    ");    return;
    }
     //Power by LJH
    

      

  • 相关阅读:
    设计模式学习笔记(三)简单工厂、工厂方法和抽象工厂之间的区别
    设计模式学习笔记(五)建造者模式和其他对象创建方式的区别
    设计模式学习笔记(二)工厂模式、模板模式和策略模式的混合使用
    域委派攻击详解
    测试人生 | 从功能到外企测开,工作1年半拿下年薪30万的测开 offer,这个95后小姐姐未来可期~
    测试人生 | 从外行到外包,从手工测试到知名互联大厂测开 这个90后小姐姐是怎么腾飞的?
    测试人生 | 从传统行业到名企大厂,薪资翻倍,我做到了
    测试人生 | 二线城市涨薪近10万 ,还能955,这样的机会你想不想要?
    测试人生 | 为了娃的奶粉钱,测试媛妈妈拿出考研的拼劲,半年终圆大厂梦!
    兑现 Service Mesh 的新价值:精确控制“爆炸半径”
  • 原文地址:https://www.cnblogs.com/tenlee/p/4528154.html
Copyright © 2020-2023  润新知