• tensorFlow 神经网络2


    learnrate 太大容易跑飞,设置激活函数 可以一定程度上增加learnrate,不跑飞

    self.saver = tf.train.Saver() 和 self.init_variable = tf.global_variables_initializer()   self.sess.run(self.init_variable)一定要写在所有变量的最后

    GradientDescentOptimizer优化器可以继续训练 AdadeltaOptimizer优化器的训练结果,反之则不行
    # -*- coding: utf-8 -*-
    
    import numpy as np
    import tensorflow as tf
    from tensorflow.python.framework import ops
    
    is_continue = True
    path_prefix = "../../../"
    
    
    class neural_network:
        def __init__(self):
            ops.reset_default_graph()
            self.model_path = path_prefix + "data/model/model"
            self.batch_size = 2000
            self.learning_rate = 0.5
            self.input_size = 15193
            self.output_size = 1
            self.sess = tf.InteractiveSession()
            self.input = tf.placeholder(tf.float32, [None, self.input_size])  # 15193个维度
            self.label = tf.placeholder(tf.float32, [None, self.output_size])
            self.add_layers(self.input_size, self.output_size, tf.nn.relu)
            self.loss = tf.reduce_mean(tf.reduce_sum(tf.square(self.output - self.label),
                                                     reduction_indices=[1]))
    
            self.optimizer = tf.train.AdadeltaOptimizer(learning_rate=self.learning_rate).minimize(loss=self.loss)
            self.saver = tf.train.Saver()
            if is_continue:
                self.saver.restore(self.sess, self.model_path)
            else:
                self.init_variable = tf.global_variables_initializer()
                self.sess.run(self.init_variable)
            self.data_generator = self.data_generator_f(
                path_prefix + ("data/trainData_local"),
                50000)
    
        def add_layers(self, input_size, output_size, activation_function=None):
            layer1_size = 200
            weight1 = tf.Variable(tf.zeros([input_size, layer1_size]) + 0.1)
            biaes1 = tf.Variable(tf.zeros([1, layer1_size]) + 0.1)
            output_layer1 = tf.matmul(self.input, weight1) + biaes1  # 200 50
            input_layer2 = output_layer1
            if activation_function is not None:
                input_layer2 = activation_function(output_layer1)
    
            layer2_size = 50
            weight2 = tf.Variable(tf.zeros([layer1_size, layer2_size]) + 0.01)
            biaes2 = tf.Variable(tf.zeros([1, layer2_size]) + 0.1)
            output_layer2 = tf.matmul(input_layer2, weight2) + biaes2  # 200 10
            input_layer3 = output_layer2
            if activation_function is not None:
                input_layer3 = activation_function(output_layer2)
    
            weight3 = tf.Variable(tf.zeros([layer2_size, self.output_size]) + 0.01)
            biaes3 = tf.Variable(tf.zeros([1, self.output_size]) + 0.1)
            output_layer3 = tf.matmul(input_layer3, weight3) + biaes3
    
            if activation_function is not None:
                self.output = activation_function(output_layer3)
            else:
                self.output = output_layer3
    
            return self.output
    
        def train(self):
            for i in range(0, 20000000):
                labels, feature = self.data_generator.next()
                self.sess.run(self.optimizer, feed_dict={
                    self.input: feature,
                    self.label: np.asarray(labels).reshape(self.batch_size, 1)
                })
    
                if (i % 10) == 0:
                    print(self.sess.run(self.loss, feed_dict={
                        self.input: feature,
                        self.label: np.asarray(labels).reshape(self.batch_size, 1)
                    }))
                    if (i % 100) == 0:
                        self.saver.save(self.sess, self.model_path)
                        print("save complete... ...")
    
        def predict(self, feature):
            print "--start predict--"
            return self.sess.run(self.output, feed_dict={
                self.input: feature
            })
    
        def data_generator_f(self, input_dir, count):
            input_filename = input_dir
            while count > 0:
                labels = np.zeros(self.batch_size)
                rets = np.empty(shape=[self.batch_size, 15193])
                i = 0
                for line in open(input_filename, "r"):
                    # print "trainData", line
                    data = line.split(" ")
                    label = int(float(data[0]))
                    ids = []
                    values = []
                    for fea in data[1:]:
                        id, value = fea.split(":")
                        ids.append(int(id))
                        values.append(float(value))
                    ret = np.zeros([1, 15193])
                    for (index, d) in zip(ids, values):
                        ret[0][index] = d
                    labels[i] = int(label)
                    rets[i] = ret
                    i += 1
                    if i > self.batch_size - 1:
                        i = 0
                        yield labels, rets
                print("train count:", count)
                count -= 1
    
    
    if __name__ == '__main__':
        print('start run... ...')
        trainer = neural_network()
        trainer.train()
        """
        trainer.batch_size = 100
        data = trainer.data_generator_f("/home/panteng/下载/20171231.libsvm", 3)
        threshold = 0.55
    
        for i in range(0, 100):
            labels, features = data.next()
            pre = trainer.predict(feature=features)
            print ("P:", np.sum(np.array([(labels > threshold)])), " N:", np.sum(np.array([(labels < threshold)])))
    
            print("accuracy:", np.sum(
                (np.array([(labels > threshold)]).reshape(trainer.batch_size, 1) == (pre > threshold)).reshape(1, trainer.batch_size)
            ) * 1.0 / trainer.batch_size)
            print("precision:",
                  np.sum((np.array([(labels > threshold)]).reshape(trainer.batch_size, 1) == (pre > threshold)) & (
                      pre > threshold)) * 1.0 / np.sum(np.array([(pre > threshold)]))
                  )
            print("recall:",
                  np.sum((np.array([(labels > threshold)]).reshape(trainer.batch_size, 1) == (pre > threshold)) & (
                      pre > threshold)) * 1.0 / np.sum(np.array([(labels > threshold)]))
                  )
        """
    View Code

    2:

    # coding:utf-8
    import tensorflow as tf
    import numpy as np
    
    tf.app.flags.DEFINE_string('train_dir', '')
    tf.app.flags.DEFINE_integer('capacity', 30000, 'indicates training epoch')
    FLAGS = tf.app.flags.FLAGS
    
    features = tf.placeholder(tf.float32, shape=[None, 151])
    label = tf.placeholder(tf.float32, shape=[None, 1])
    
    
    def read_csv():
        file_queue = tf.train.string_input_producer(tf.train.match_filenames_once(FLAGS.train_dir + "*"))
        reader = tf.TextLineReader(skip_header_lines=1)
        key, value = reader.read(file_queue)
        data = tf.decode_csv(value, record_defaults=[[0.0] for _ in range(152)], field_delim="	")
        return tf.train.shuffle_batch(data, batch_size=1024, capacity=FLAGS.capacity,
                                      min_after_dequeue=FLAGS.capacity / 2, num_threads=8)
    
    
    def build_net():
        deep_layer1 = tf.layers.dense(inputs=features, units=80, activation=tf.nn.relu)
        deep_layer2 = tf.layers.dense(inputs=deep_layer1, units=32, activation=tf.nn.relu)
        deep_layer3 = tf.layers.dense(inputs=deep_layer2, units=8, activation=tf.nn.relu)
        deep_layer4 = tf.layers.dense(inputs=deep_layer3, units=5, activation=tf.nn.relu)
        wide_layer1 = tf.layers.dense(inputs=features, units=1, activation=tf.nn.sigmoid)
    
        wide_deep_layer = tf.concat([wide_layer1, deep_layer4], axis=1)
        return tf.layers.dense(inputs=wide_deep_layer, units=1, activation=tf.nn.sigmoid)
    
    
    with tf.Session() as sess:
        output = build_net()
        loss = tf.reduce_mean(tf.reduce_sum(tf.squared_difference(output, label)))
        optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
    
        train_data = read_csv()
        init = (tf.global_variables_initializer(), tf.local_variables_initializer())
        sess.run(init)
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)
        data_set = sess.run(train_data)
        label_in = np.array(data_set[0], dtype='int').ravel()
        feature_in = np.transpose(data_set[1:])
        for i in range(100):
            sess.run(optimizer,
                     feed_dict={features: np.array(feature_in).reshape([-1, 151]),
                                label: np.array(label_in).reshape([-1, 1])})
            print sess.run(loss,
                           feed_dict={features: np.array(feature_in).reshape([-1, 151]),
                                      label: np.array(label_in).reshape([-1, 1])})
    View Code
  • 相关阅读:
    NX二次开发-UFUN设置显示状态抑制显示UF_DISP_set_display
    NX二次开发-使用NXOPEN C++向导模板做二次开发
    ANTV/G6 怎么按条件自定义节点颜色(Graphin)
    js数组去重及数组对象去重
    vue组件老胡机抽奖(转载)
    Kafka第二节
    Kafka第一节
    更改idea的database数据库连接的ddl格式
    不推荐别的了,IDEA 自带的数据库工具就很牛逼!
    MongoDB 按照时间段查询某个物理机的CPU使用率,按照时间倒序排序,取出最新的5条数据
  • 原文地址:https://www.cnblogs.com/tengpan-cn/p/8258465.html
Copyright © 2020-2023  润新知