• spark 机器学习


    两种机器学习库ml 与 mlib

    mllib contains old RDD-based API

    ml contains new API build around Dataset and ML Pipelines

      分类 回归
    逻辑回归 二分类和多分类 不支持回归
    决策树 二分类和多分类 支持回归
    随机森林 二分类和多分类 支持回归

      GBDT  二分类    支持回归

    多分类问题:

    1、逻辑回归

    def multiclassLr(spark: SparkSession, saveDir: String, dataSet: RDD[LabeledPoint]): Unit = {
            import spark.implicits._
            val data = spark.sqlContext.createDataset(dataSet.map {
                labelPoint =>
                    (labelPoint.label, labelPoint.features.asML)
            }).toDF("label", "features").cache()
    
            /*val idfModel = new IDF()
                    .setInputCol("rawFeatures")
                    .setOutputCol("features")
                    .fit(data)
            val tfIdfData = idfModel.transform(data)*/
    
            val Array(trainingData, testData) = data.randomSplit(Array(0.8, 0.2), seed = 123)
    
            val lr = new LogisticRegression()
                    .setMaxIter(5)
                    .setRegParam(0.0)
                    .setElasticNetParam(0.0)
                    .setStandardization(true)
            val lrModel = LogisticRegressionModel.load("/lrmodel")
            //            lr.fit(trainingData)
            //        lrModel.write.overwrite.save("/lrmodel")
            val result = lrModel.transform(testData).cache()
            println(
                result.select("label", "prediction").rdd
                        .map {
                            row => ((row(0), row(1)), 1)
                        }
                        .reduceByKey(_ + _)
                        .sortBy { case ((label, _), count) => label.toString.toDouble * 100000 + count }
                        .collect().mkString("
    ")
            )
            val recall = result.select("label", "prediction").rdd
                    .map { row =>
                        ((row(0), row(1)), 1)
                    }
                    .reduceByKey(_ + _)
                    .map {
                        case ((label, pre), count) =>
                            ((label, label.toString.toDouble.toInt == pre.toString.toDouble.toInt
                                    /*|| (label.toString.toDouble.toInt == 77 && pre.toString.toDouble.toInt == 75)
                                    || (label.toString.toDouble.toInt == 76 && pre.toString.toDouble.toInt == 75)*/ ), count)
                    }
                    .reduceByKey(_ + _)
                    .map {
                        case ((label, right), count) =>
                            (label, (if (right) 1 else 0, count))
                    }
                    .reduceByKey {
                        case ((right1, count1), (_, count2)) => {
                            (count1 + count2, if (right1 == 1) count1 else count2)
                        }
                    }
                    .map {
                        case (label, (all, right)) =>
                            if (all > 1) {
                                (label.toString.toDouble.toInt, (all, right * 1.0 / all))
                            } else {
                                (label.toString.toDouble.toInt, (all + right, all * 1.0))
                            }
                    }
            val prediction = result.select("prediction", "label").rdd
                    .map { row =>
                        ((row(0), row(1)), 1)
                    }
                    .reduceByKey(_ + _)
                    .map {
                        case ((label, pre), count) =>
                            ((label, label.toString.toDouble.toInt == pre.toString.toDouble.toInt
                                    /*|| (label.toString.toDouble.toInt == 77 && pre.toString.toDouble.toInt == 75)
                                    || (label.toString.toDouble.toInt == 76 && pre.toString.toDouble.toInt == 75)*/ ), count)
                    }
                    .reduceByKey(_ + _)
                    .map {
                        case ((label, right), count) =>
                            (label, (if (right) 1 else 0, count))
                    }
                    .reduceByKey {
                        case ((right1, count1), (_, count2)) => {
                            (count1 + count2, if (right1 == 1) count1 else count2)
                        }
                    }
                    .map {
                        case (label, (all, right)) =>
                            if (all > 1) {
                                (label.toString.toDouble.toInt, (all, right * 1.0 / all))
                            } else {
                                (label.toString.toDouble.toInt, (right, all * 1.0))
                            }
                    }
    
            println(recall.join(prediction).sortBy { case (_, ((_, r), (_, _))) => 0 - r }.collect().mkString("
    "))
            val evaluator = new MulticlassClassificationEvaluator()
                    .setLabelCol("label")
                    .setPredictionCol("prediction")
            val weightedPrecision = evaluator.setMetricName("weightedPrecision").evaluate(result)
            val weightedRecall = evaluator.setMetricName("weightedRecall").evaluate(result)
            val accuracy = evaluator.setMetricName("accuracy").evaluate(result)
            println("weightedPrecision = " + weightedPrecision)
            println("weightedRecall = " + weightedRecall)
            println("accuracy = " + accuracy)
        }
    View Code

    2、朴素贝叶斯

    def naiveBayes(spark: SparkSession, dataSet: RDD[LabeledPoint]): Unit = {
            import spark.implicits._
            val data = spark.sqlContext.createDataset(dataSet.map {
                labelPoint =>
                    (labelPoint.label, labelPoint.features.asML)
            }).toDF("label", "features")
    
            /*val idfModel = new IDF()
                    .setInputCol("rawFeatures")
                    .setOutputCol("features")
                    .fit(data)
            val tfIdfData = idfModel.transform(data)*/
    
            val Array(trainingData, testData) = data.select("label", "features").map {
                case Row(label: Double, features: org.apache.spark.ml.linalg.Vector) =>
                    new LabeledPoint(label.toDouble, Vectors.dense(features.toArray))
            }.randomSplit(Array(0.8, 0.2), seed = 13)
            /*val model = new NaiveBayes()
                    .setSmoothing(1.0)
                    .fit(trainingData)*/
            val model = org.apache.spark.mllib.classification.NaiveBayes.train(trainingData.rdd, lambda = 0.5)
            testData.cache()
            val result = testData.rdd.map { labeledPoint: LabeledPoint => ((model.predict(labeledPoint.features), labeledPoint.label), 1) }
                    .reduceByKey(_ + _)
                    .map {
                        case ((label, predict), count) =>
                            ((label, if (label == predict) 1 else 0), count)
                    }
                    .reduceByKey(_ + _)
                    .map { case ((label, right), count) => (label, (right * 1.0, count * 1.0)) }
                    .reduceByKey {
                        case ((right1, count1), (right2, count2)) =>
                            if (right1 > 0.5) {
                                (count1 + count2, count1 / (count1 + count2))
                            } else {
                                (count1 + count2, count2 / (count1 + count2))
                            }
                    }
                    .sortBy { case (_, (_, r)) => r }
    
            val result2 = testData.rdd.map { labeledPoint: LabeledPoint => ((labeledPoint.label, model.predict(labeledPoint.features)), 1) }
                    .reduceByKey(_ + _)
                    .map {
                        case ((label, predict), count) =>
                            ((label, if (label == predict) 1 else 0), count)
                    }
                    .reduceByKey(_ + _)
                    .map { case ((label, right), count) => (label, (right * 1.0, count * 1.0)) }
                    .reduceByKey {
                        case ((right1, count1), (_, count2)) =>
                            if (right1 > 0.5) {
                                (count1 + count2, count1 / (count1 + count2))
                            } else {
                                (count1 + count2, count2 / (count1 + count2))
                            }
                    }
                    .sortBy { case (_, (_, r)) => r }
            println("==============准确率============")
            println(result.collect().mkString("
    "))
            println("===============召回===========")
            println(result2.collect().mkString("
    "))
            /*val evaluator = new MulticlassClassificationEvaluator()
                    .setLabelCol("label")
                    .setPredictionCol("prediction")
            val weightedPrecision = evaluator.setMetricName("weightedPrecision").evaluate(result)
            val weightedRecall = evaluator.setMetricName("weightedRecall").evaluate(result)
            val accuracy = evaluator.setMetricName("accuracy").evaluate(result)
            println("weightedPrecision = " + weightedPrecision)
            println("weightedRecall = " + weightedRecall)
            println("accuracy = " + accuracy)*/
        }
    View Code

    3、随机森林

    def randomForest(spark: SparkSession, dataSet: RDD[LabeledPoint], saveDir: String, argsMap: Map[String, String]): Unit = {
            val treeCount = argsMap.getOrElse("treeCount", "10").toInt
            val treeDeepth = argsMap.getOrElse("treeDeepth", "10").toInt
    
            import spark.implicits._
            val data = spark.sqlContext.createDataset(dataSet.map {
                labelPoint =>
                    (labelPoint.label, labelPoint.features.asML)
            }).toDF("label", "features")
    
            val Array(trainData, testData) = dataSet.randomSplit(Array(0.8, 0.2))
            val model = org.apache.spark.mllib.tree.RandomForest.trainClassifier(trainData, 29, Map[Int, Int](), treeCount, "auto", "gini", treeDeepth, 2, 123)
    
            val labelAndPreds = testData.map { point =>
                val prediction = model.predict(point.features)
                (point.label, prediction)
            }
            val testErr = labelAndPreds.filter(r => r._1 != r._2).count.toDouble / testData.count()
            spark.sparkContext.parallelize(Seq("Test Error = " + testErr)).saveAsTextFile(saveDir + "testErr")
            spark.sparkContext.parallelize(Seq("Learned classification forest model:
    " + model.toDebugString)).saveAsTextFile(saveDir + "model")
            //        println("Test Error = " + testErr)
            //        println("Learned classification forest model:
    " + model.toDebugString)
        }
    View Code
  • 相关阅读:
    jQuery-css
    了解jQuery
    jQuery属性
    jQuery常用效果
    jQuery_$工具方法
    jQuery选择器
    jQuery核心对象
    $
    jQuery两把利器
    JavaScriptDOM
  • 原文地址:https://www.cnblogs.com/tengpan-cn/p/7850950.html
Copyright © 2020-2023  润新知