• Stanford coursera Andrew Ng 机器学习课程第四周总结(附Exercise 3)


    Introduction

    Neural NetWork的由来

    先考虑一个非线性分类,当特征数很少时,逻辑回归就可以完成了,但是当特征数变大时,高阶项将呈指数性增长,复杂度可想而知。如下图:对房屋进行高低档的分类,当特征值只有x1,x2,x3时,我们可以对它进行处理,分类。但是当特征数增长为x1,x2....x100时,分类器的效率就会很低了。 

    Neural NetWork模型

     

    该图是最简单的神经网络,共有3层,输入层Layer1;隐藏层Layer2;输出层Layer3,每层都有多个激励函数ai(j).通过层与层之间的传递参数Θ得到最终的假设函数hΘ(x)。我们的目的是通过大量的输入样本x(作为第一层),训练层与层之间的传递参数(经常称为权重),使得假设函数尽可能的与实际输出值接近h(x)≈y(代价函数J尽可能的小)。

    逻辑回归模型

    很容易看出,逻辑回归是没有隐藏层的神经网络,层与层之间的传递函数就是θ。

    Neural NetWork

    神经网络模型---正向传播  

     

    Cost function(代价函数)

    Examples and intuitions

    这里写图片描述

     

    Multi-class classification

    对于多分类问题,我们可以通过设置多个输出值来实现。

    编程作业就是一个多分类问题——手写数字识别

    输入的是手写的照片(数字0-9),5000组样本、每个像素点用20×20的点阵表示成一行,输入向量为5000×400的矩阵X,经过神经网络传递后,输出一个假设函数(列向量),取最大值所在的行号即为假设值(0-9中的一个)。也就是输出值y = 1,2,3,4,5.....10又有可能,为了方便数值运算,我们用10×1的列向量表示,譬如 y = 5,有

    Exercises

    这次的作业是用逻辑回归和神经网络来实现手写数字识别,比较下两者的准确性。

    Logistic Regression

    lrCostFunction.m

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    %LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
    %regularization
    %   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Hint: The computation of the cost function and gradients can be
    %       efficiently vectorized. For example, consider the computation
    %
    %           sigmoid(X * theta)
    %
    %       Each row of the resulting matrix will contain the value of the
    %       prediction for that example. You can make use of this to vectorize
    %       the cost function and gradient computations. 
    %
    % Hint: When computing the gradient of the regularized cost function, 
    %       there're many possible vectorized solutions, but one solution
    %       looks like:
    %           grad = (unregularized gradient for logistic regression)
    %           temp = theta; 
    %           temp(1) = 0;   % because we don't add anything for j = 0  
    %           grad = grad + YOUR_CODE_HERE (using the temp variable)
    %
    theta_reg=[0;theta(2:size(theta))];
    
    J = (-y'*log(sigmoid(X*theta))-(1-y)'*log(1-sigmoid(X*theta)))/m + lambda/(2*m)*(theta_reg')*theta_reg;
    
    grad = X'*(sigmoid(X*theta)-y)/m + lambda/m*theta_reg;
    
    % =============================================================
    
    grad = grad(:);
    
    end

    oneVsAll.m 

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    %ONEVSALL trains multiple logistic regression classifiers and returns all
    %the classifiers in a matrix all_theta, where the i-th row of all_theta 
    %corresponds to the classifier for label i
    %   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
    %   logistic regression classifiers and returns each of these classifiers
    %   in a matrix all_theta, where the i-th row of all_theta corresponds 
    %   to the classifier for label i
    
    % Some useful variables
    m = size(X, 1);
    n = size(X, 2);
    
    % You need to return the following variables correctly 
    all_theta = zeros(num_labels, n + 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: You should complete the following code to train num_labels
    %               logistic regression classifiers with regularization
    %               parameter lambda. 
    %
    % Hint: theta(:) will return a column vector.
    %
    % Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
    %       whether the ground truth is true/false for this class.
    %
    % Note: For this assignment, we recommend using fmincg to optimize the cost
    %       function. It is okay to use a for-loop (for c = 1:num_labels) to
    %       loop over the different classes.
    %
    %       fmincg works similarly to fminunc, but is more efficient when we
    %       are dealing with large number of parameters.
    %
    % Example Code for fmincg:
    %
    %     % Set Initial theta
    %     initial_theta = zeros(n + 1, 1);
    %     
    %     % Set options for fminunc
    %     options = optimset('GradObj', 'on', 'MaxIter', 50);
    % 
    %     % Run fmincg to obtain the optimal theta
    %     % This function will return theta and the cost 
    %     [theta] = ...
    %         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
    %                 initial_theta, options);
    %
    
    
     initial_theta = zeros(n + 1, 1);
     
     options = optimset('GradObj', 'on', 'MaxIter', 50);
     
     for c = 1:num_labels
        all_theta(c,:) = fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), initial_theta, options);
     end
    
    
    
    % =========================================================================
    
    
    end

    predictOneVsAll.m

    function p = predictOneVsAll(all_theta, X)
    %PREDICT Predict the label for a trained one-vs-all classifier. The labels 
    %are in the range 1..K, where K = size(all_theta, 1). 
    %  p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
    %  for each example in the matrix X. Note that X contains the examples in
    %  rows. all_theta is a matrix where the i-th row is a trained logistic
    %  regression theta vector for the i-th class. You should set p to a vector
    %  of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
    %  for 4 examples) 
    
    m = size(X, 1);
    num_labels = size(all_theta, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned logistic regression parameters (one-vs-all).
    %               You should set p to a vector of predictions (from 1 to
    %               num_labels).
    %
    % Hint: This code can be done all vectorized using the max function.
    %       In particular, the max function can also return the index of the 
    %       max element, for more information see 'help max'. If your examples 
    %       are in rows, then, you can use max(A, [], 2) to obtain the max 
    %       for each row.
    %       
    
    [maxx, p]=max(X*all_theta',[],2);
    
    
    % =========================================================================
    
    
    end

    Training Set Accuracy: 95.100000

    下面是以三层bp神经网络处理的手写数字识别,其中权重矩阵已给出。

    predict.m

    function p = predict(Theta1, Theta2, X)
    %PREDICT Predict the label of an input given a trained neural network
    %   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
    %   trained weights of a neural network (Theta1, Theta2)
    
    % Useful values
    m = size(X, 1);
    num_labels = size(Theta2, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned neural network. You should set p to a 
    %               vector containing labels between 1 to num_labels.
    %
    % Hint: The max function might come in useful. In particular, the max
    %       function can also return the index of the max element, for more
    %       information see 'help max'. If your examples are in rows, then, you
    %       can use max(A, [], 2) to obtain the max for each row.
    %
    X = [ones(m, 1) X];
    
    temp=sigmoid(X*Theta1');
    
    temp = [ones(m, 1) temp];
    
    temp2=sigmoid(temp*Theta2');
    
    [maxx, p]=max(temp2, [], 2);
    
    
    % =========================================================================
    
    
    end

    Training Set Accuracy: 97.520000

    注意事项

    1.X = [ones(m, 1) X];是确保矩阵维度一致。X0就是一行1

    2.正则化时theta0要用0替代,处理如theta_reg=[0;theta(2:size(theta))];

  • 相关阅读:
    react第十九单元(react+react-router-dom+redux综合案例1)
    react第十八单元(redux中间件redux-thunk,redux工程目录的样板代码,规范目录结构)
    react第十七单元(redux和组件之间的通信,react-redux的相关api的用法)
    react第十六单元(redux的认识,redux相关api的掌握)
    react第十五单元(react路由的封装,以及路由数据的提取)
    react第十四单元(react路由-react路由的跳转以及路由信息)
    react第十三单元(react路由-react路由的跳转以及路由信息) #课程目标
    react第十二单元(react路由-使用react-router-dom-认识相关的组件以及组件属性)
    如何在ABAP程序中debug宏代码
    ◆◆0SRM寻源(sources of supply)debug断点设置小技巧
  • 原文地址:https://www.cnblogs.com/tenderwx/p/7448180.html
Copyright © 2020-2023  润新知