• HDU4609 计数问题+FFT


    题目大意:

    给出n(1e5)条线段(长度为整数,<=1e5),求任取3条线段能组成一个三角形的概率。

    用cnt[i]记录长度为i的线段的个数,通过卷积可以计算出两条线段长度之和为i的方案数sum[i]:先用FFT计算出cnt[i]的卷积sum[i],为取两条线段长度和为i的排列数(包括自己和自己),去掉自己和自己的方案数,再对所有sum[i]除以2即为所求方案数。

    之后对所有线段a[i]有大到小排列,考虑第i条线段是三角形最长边的情况(长度相同则将编号大的视为更长,就没有长度相同的情况了。实际计算时无影响)。首先是sum[i + 1] + sum[i + 2] + ... + sum[len - 1],即其他两边之和要大于他的方案数。然后去掉:1.另两边有一条比他大,有一条比他小。 2.两条都比他长。 3.有一条是他自己。这三种情况。

    要注意有些地方爆int。还有len的计算要注意边界(一直wa,wa了半天)。

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    
    const double pi = acos(-1);
    
    struct Complex{
        double real, imag;
        Complex (){}
        Complex (double _real, double _imag){
            real = _real;
            imag = _imag;
        }
    };
    
    Complex operator + (Complex x, Complex y){
        return Complex(x.real + y.real, x.imag + y.imag);
    }
    
    Complex operator - (Complex x, Complex y){
        return Complex(x.real - y.real, x.imag - y.imag);
    }
    
    Complex operator * (Complex x, Complex y){
        return Complex(x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real);
    }
    
    Complex operator / (Complex x, double y){
        return Complex(x.real / y, x.imag / y);
    }
    
    int reverse(int x, int len){
        int t = 0;
        for (int i = 1; i < len; i <<= 1){
            t <<= 1;
            if (x & i) t |= 1;
        }
        return t;
    }
    
    Complex A[400010];
    void FFT(Complex *a, int n, int DFT){
        for (int i = 0; i < n; ++i) A[reverse(i, n)] = a[i];
        for (int i = 2; i <= n; i <<= 1){
            Complex wn = Complex(cos(2 * pi / i), DFT * sin(2 * pi / i));
            for (int j = 0; j < n; j += i){
                Complex w = Complex(1, 0);
                for (int k = 0; k < (i >> 1); ++k){
                    Complex x = A[j + k];
                    Complex y = w * A[j + k + (i >> 1)];
                    A[j + k] = x + y;
                    A[j + k + (i >> 1)] = x - y;
                    w = w * wn;
                }
            }
        }
        if (DFT == -1) for (int i = 0; i < n; ++i) A[i] = A[i] / n;
        for (int i = 0; i < n; ++i) a[i] = A[i];
    }
    
    int T, n;
    int a[400010];
    int cnt[400010];
    Complex B[400010];
    long long sum[400010];
    
    int main(){
    
        scanf("%d", &T);
        while (T--){
            scanf("%d", &n);
            int maxL = 0;
            memset(cnt, 0, sizeof(cnt));
            memset(sum, 0, sizeof(sum));
            for (int i = 0; i < n; ++i){
                scanf("%d", a + i);
                if (a[i] > maxL) maxL = a[i];
                ++cnt[a[i]];
            }
            int len = 1;
            while (len <= maxL * 2) len <<= 1;
            for (int i = 0; i <= maxL; ++i) B[i] = Complex(cnt[i], 0);
            for (int i = maxL + 1; i < len; ++i) B[i] = Complex(0, 0);
            FFT(B, len, 1);
            for (int i = 0; i < len; ++i) B[i] = B[i] * B[i];
            FFT(B, len, -1);
            for (int i = 0; i < len; ++i) sum[i] = (long long)(B[i].real + 0.5);
            for (int i = 0; i < n; ++i) --sum[a[i] + a[i]];
            for (int i = 0; i < len; ++i) sum[i] >>= 1;
            for (int i = len - 2; i >= 0; --i) sum[i] += sum[i + 1];
            sort(a, a + n);
            long long ans = 0;
            for (int i = 0; i < n; ++i){
                long long tmp = sum[a[i] + 1];
                tmp -= ((long long)n - i - 1) * i;
                tmp -= ((long long)n - i - 1) * (n - i - 2) / 2LL;
                tmp -= n - 1;
                ans += tmp;
            }
            double Ans = (double)ans * 6.0 / n / (n - 1) / (n - 2);
            printf("%.7f
    ", Ans);
        }
    
        return 0;
    }
  • 相关阅读:
    从对比学习(Contrastive Learning)到对比聚类(Contrastive Clustering)
    国际学术会议英文口头报告(Oral presentation)常用语句
    物以类聚人以群分:聚类分析的一些挑战和进展
    多视图子空间聚类/表示学习(Multi-view Subspace Clustering/Representation Learning)
    关于“Unsupervised Deep Embedding for Clustering Analysis”的优化问题
    【Swift】TableView显示多列数据,锁定第一列位置
    【Swift】 WKWebView https 加载不受信任的站点
    【Swift】Starscream 实现socket连接
    【Swift】GRDB数据库本地存储聊天记录
    【Swift/Objective-c】公司项目优化(二)
  • 原文地址:https://www.cnblogs.com/tempestT/p/7672496.html
Copyright © 2020-2023  润新知