• Mapreduce 订单分组案例


    程序执行流程如下:

    map()-->getPartition()分区--->write()(序列化,每一行都顺序执行这三个方法)--->readFields()---->compareTo()排序---->readFields()--->分组compare--->reduce()

    对于每一行的内容,依次执行map()-->getPartition()---->write()(序列化,会在指定的输出目录下生成temporary目录),全部序列化完成之后执行readFields(),之后进行排序,全部排序完毕后才会再次执行readFields(),

    之后进行分组,分出一组,执行一次reduce()写出数据

    1.OrderBean(分了区之后就不需要对OrderId进行排序了,因为同一分区OrderId相同)

     1 package mapreduce.order;
     2 
     3 import java.io.DataInput;
     4 import java.io.DataOutput;
     5 import java.io.IOException;
     6 import org.apache.hadoop.io.WritableComparable;
     7 
     8 public class OrderBean implements WritableComparable<OrderBean>{
     9     private String orderId;
    10     private Double price;
    11     
    12     public String getOrderId() {
    13         return orderId;
    14     }
    15 
    16     public void setOrderId(String orderId) {
    17         this.orderId = orderId;
    18     }
    19 
    20     public Double getPrice() {
    21         return price;
    22     }
    23 
    24     public void setPrice(Double price) {
    25         this.price = price;
    26     }
    27 
    28     public OrderBean() {
    29         super();
    30     }
    31 
    32     /**
    33      * 序列化
    34      * @param out
    35      * @throws IOException
    36      */
    37     @Override
    38     public void write(DataOutput out) throws IOException {
    39         out.writeUTF(orderId);
    40         out.writeDouble(price);
    41     }
    42 
    43     /**
    44      * 反序列化
    45      * @param in
    46      * @throws IOException
    47      */
    48     @Override
    49     public void readFields(DataInput in) throws IOException {
    50         orderId = in.readUTF();
    51         price   = in.readDouble();
    52     }
    53 
    54     
    55     @Override
    56     public String toString() {
    57         return orderId + "	" + price;
    58     }
    59 
    60     /**
    61      * 二次排序(如果进行了分区,可以直接对price排序,不再需要二次排序)
    62      * @param o
    63      * @return
    64      */
    65     @Override
    66     public int compareTo(OrderBean o) {
    67         //先比较orderId(字符串)
    68     //    int result = this.getOrderId().compareTo(o.getOrderId());
    69         
    70         //相同再比较price
    71     //    if(result == 0) {
    72             //降序,数字的compareTo() -1表示小于
    73         int    result = this.getPrice() > o.getPrice()?-1:1;
    74     //    }
    75         return result;
    76     }
    77 }

    2.OrderMapper

     1 package mapreduce.order;
     2 
     3 import java.io.IOException;
     4 import org.apache.hadoop.io.LongWritable;
     5 import org.apache.hadoop.io.NullWritable;
     6 import org.apache.hadoop.io.Text;
     7 import org.apache.hadoop.mapreduce.Mapper;
     8 
     9 public class OrderMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable> {
    10     OrderBean order = new OrderBean();
    11 
    12     @Override
    13     protected void map(LongWritable key, Text value,
    14             Mapper<LongWritable, Text, OrderBean, NullWritable>.Context context)
    15             throws IOException, InterruptedException {
    16 
    17         // 1.读取一行
    18         String line = value.toString();
    19 
    20         // 2.切割并封装对象
    21         String[] split = line.split("	");
    22         order.setOrderId(split[0]);
    23         order.setPrice(Double.parseDouble(split[2]));
    24 
    25         // 3.输出
    26         context.write(order, NullWritable.get());
    27     }
    28 }

    3.OrderPartioner

     1 package mapreduce.order;
     2 
     3 import org.apache.hadoop.io.NullWritable;
     4 import org.apache.hadoop.mapreduce.Partitioner;
     5 
     6 /**
     7  * 分区
     8  * @author tele
     9  *
    10  */
    11 public class OrderPartioner extends Partitioner<OrderBean, NullWritable> {
    12     /**
    13      * 默认是根据orderBean的hashcode进行分区
    14      * 现在更改为orderBean对象的orderId进行分区,这样相同orderId的即可进入同一分区
    15      */
    16     @Override
    17     public int getPartition(OrderBean key, NullWritable value, int numReduceTasks) {
    18         return (key.getOrderId().hashCode() & Integer.MAX_VALUE) % numReduceTasks;
    19     }
    20 }

    4.OrderGroupComparator

     1 package mapreduce.order;
     2 
     3 import org.apache.hadoop.io.WritableComparable;
     4 import org.apache.hadoop.io.WritableComparator;
     5 
     6 /**
     7  * reduce分组的方法
     8  * 
     9  * @author tele
    10  *
    11  */
    12 public class OrderGroupComparator extends WritableComparator {
    13     /**
    14      * 确保类型转换成功,能够创建实例,如果是false,创建的实例为null
    15      */
    16     protected OrderGroupComparator() {
    17         super(OrderBean.class, true);
    18     }
    19 
    20     /**
    21      * reduce默认是根据key进行分组,即此处的orderBean,重写之后
    22      * 根据orderBean的orderId进行分组,相同的orderId的orderBean将会分到同一组
    23      */
    24     @Override
    25     public int compare(WritableComparable a, WritableComparable b) {
    26         OrderBean bean1 = (OrderBean) a;
    27         OrderBean bean2 = (OrderBean) b;
    28         return bean1.getOrderId().compareTo(bean2.getOrderId());
    29     }
    30 }

    5.OrderReducer(reduce()每次读入一组)

     1 package mapreduce.order;
     2 
     3 import java.io.IOException;
     4 import org.apache.hadoop.io.NullWritable;
     5 import org.apache.hadoop.mapreduce.Reducer;
     6 
     7 public class OrderReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable> {
     8     @Override
     9     protected void reduce(OrderBean key, Iterable<NullWritable> value,
    10             Reducer<OrderBean, NullWritable, OrderBean, NullWritable>.Context context)
    11             throws IOException, InterruptedException {
    12         context.write(key, NullWritable.get());
    13     }
    14 }

    6.OrderDriver(必须设置分组类)

     1 package mapreduce.order;
     2 
     3 import java.io.IOException;
     4 import org.apache.hadoop.conf.Configuration;
     5 import org.apache.hadoop.fs.Path;
     6 import org.apache.hadoop.io.NullWritable;
     7 import org.apache.hadoop.mapreduce.Job;
     8 import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
     9 import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    10 
    11 /**
    12  * 
    13  * @author tele
    14  *
    15  */
    16 public class OrderDriver {
    17     public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
    18         // 1.获得job实例
    19         Configuration conf = new Configuration();
    20         Job job = Job.getInstance(conf);
    21 
    22         // 2.设置driverclass
    23         job.setJarByClass(OrderDriver.class);
    24         // mapclass
    25         job.setMapperClass(OrderMapper.class);
    26         // reduceclass
    27         job.setReducerClass(OrderReducer.class);
    28 
    29         // 3.map输入输出数据类型
    30         job.setMapOutputKeyClass(OrderBean.class);
    31         job.setMapOutputValueClass(NullWritable.class);
    32 
    33         // 4.最终输出数据类型
    34         job.setOutputKeyClass(OrderBean.class);
    35         job.setOutputValueClass(NullWritable.class);
    36 
    37         // 7.设置分区类
    38         job.setPartitionerClass(OrderPartioner.class);
    39         job.setNumReduceTasks(3);
    40 
    41         // 8.设置分组类
    42         job.setGroupingComparatorClass(OrderGroupComparator.class);
    43 
    44         // 5.输入与输出路径
    45         FileInputFormat.setInputPaths(job, new Path(args[0]));
    46         FileOutputFormat.setOutputPath(job, new Path(args[1]));
    47 
    48         // 6.提交与退出
    49         boolean result = job.waitForCompletion(true);
    50         System.exit(result ? 0 : 1);
    51 
    52     }
    53 }
  • 相关阅读:
    mfc启动画面
    个人冲刺第十天
    个人冲刺第九天
    个人冲刺第八天
    个人冲刺第七天
    个人冲刺第六天
    新一周冲刺计划2
    新一周冲刺
    创意1
    团队绩效与目标
  • 原文地址:https://www.cnblogs.com/tele-share/p/9648772.html
Copyright © 2020-2023  润新知