• R语言代写COPULAS和金融时间序列


    原文 http://tecdat.cn/?p=3385

    最近我被要求撰写关于金融时间序列的copulas的调查。不幸的是,该文件目前是法文版,可在https://hal.archives-ouvertes.fr/上找到。从读取数据中获得各种模型的描述,包括一些图形和统计输出。

     > temp < - tempfile()
    > download.file(
    +“http://freakonometrics.free.fr/oil.xls",temp)
    > oil = read.xlsx(temp,sheetName =“DATA”,dec =“,”)
    > oil = read.xlsx(“D:\ home \ acharpen \ mes documents \ oil.xls”,sheetName =“DATA”)

    然后我们可以绘制这三个时间序列

    1 1997-01-10 2.73672 2.25465 3.3673 1.5400

    2 1997-01-17 -3.40326 -6.01433 -3.8249 -4.1076

    3 1997-01-24 -4.09531 -1.43076 -6.6375 -4.6166

    4 1997-01-31 -0.65789 0.34873 0.7326 -1.5122

    5 1997-02-07 -3.14293 -1.97765 -0.7326 -1.8798

    6 1997-02-14 -5.60321 -7.84534 -7.6372 -11.0549

    这个想法是在这里使用一些多变量ARMA-GARCH过程。这里的启发式是第一部分用于模拟时间序列平均值的动态,第二部分用于模拟时间序列方差的动态。本文考虑了两种模型

    • 关于ARMA模型残差的多变量GARCH过程(或方差矩阵动力学模型)
    • 关于ARMA-GARCH过程残差的多变量模型(基于copula)

    因此,这里将考虑不同的系列,作为不同模型的残差获得。我们还可以将这些残差标准化。来自ARMA模型

    > fit1 = arima(x = dat [,1],order = c(2,0,1))
    > fit2 = arima(x = dat [,2],order = c(1,0,1))
    > fit3 = arima(x = dat [,3],order = c(1,0,1))
    > m < - apply(dat_arma,2,mean)
    > v < - apply(dat_arma,2,var)
    > dat_arma_std < - t((t(dat_arma)-m)/ sqrt(v))

    或者来自ARMA-GARCH模型

    > fit1 = garchFit(formula = ~arma(2,1)+ garch(1,1),data = dat [,1],cond.dist =“std”)
    > fit2 = garchFit(formula = ~arma(1,1)+ garch(1,1),data = dat [,2],cond.dist =“std”)
    > fit3 = garchFit(formula = ~arma(1,1)+ garch(1,1),data = dat [,3],cond.dist =“std”)
    > m_res < - apply(dat_res,2,mean)
    > v_res < - apply(dat_res,2,var)
    > dat_res_std = cbind((dat_res [,1] -m_res [1])/ sqrt(v_res [1]),(dat_res [,2] -m_res [2])/ sqrt(v_res [2]),(dat_res [ ,3] -m_res [3])/ SQRT(v_res [3]))

     

    多变量GARCH模型

    可以考虑的第一个模型是协方差矩阵的多变量EWMA,

    > ewma = EWMAvol(dat_res_std,lambda = 0.96)

    要想象波动性,请使用

    > emwa_series_vol = function(i = 1){
    + lines(Time,dat_arma [,i] + 40,col =“gray”)
    + j = 1
    + if(i == 2)j = 5
    + if(i == 3)j = 9

    隐含的相关性在这里

    > emwa_series_cor = function(i = 1,j = 2){
    + if((min(i,j)== 1)&(max(i,j)== 2)){
    + a = 1; B = 9; AB = 3}
    + r = ewma $ Sigma.t [,ab] / sqrt(ewma $ Sigma.t [,a] *
    + ewma $ Sigma.t [,b])
    + plot(Time,r,type =“l”,ylim = c(0,1))
    +}

    也可能有一些多变量GARCH,即BEKK(1,1)模型,例如使用:

    > bekk = BEKK11(dat_arma)
    > bekk_series_vol function(i = 1){
    + plot(Time, $ Sigma.t [,1],type =“l”,
    + ylab = (dat)[i],col =“white”,ylim = c(0,80))
    + lines(Time,dat_arma [,i] + 40,col =“gray”)
    + j = 1

    + if(i == 2)j = 5

    + if(i == 3)j = 9

    > bekk_series_cor = function(i = 1,j = 2){
    + a = 1; B = 5; AB = 2}
    + a = 1; B = 9; AB = 3}
    + a = 5; B = 9; AB = 6}
    + r = bk $ Sigma.t [,ab] / sqrt(bk $ Sigma.t [,a] *
    + bk $ Sigma.t [,b])

     

    从单变量GARCH模型中模拟残差

    第一步可能是考虑残差的一些静态(联合)分布。单变量边际分布是

    而关节密度的轮廓(使用双变量核估计器获得)是

    也可以将copula密度可视化(顶部有一些非参数估计,下面是参数copula)

    > copula_NP = function(i = 1,j = 2){
    + n = nrow(uv)
    + s = 0.3
    + norm.cop < - normalCopula(0.5)
    + norm.cop < - normalCopula(fitCopula(norm.cop,uv)@estimate)
    + dc = function(x,y)dCopula(cbind(x,y),norm.cop)
    + ylab = names(dat)[j],zlab =“copule Gaussienne”,ticktype =“detailed”,zlim = zl)
    +
    + t.cop < - tCopula(0.5,df = 3)
    + t.cop < - tCopula(t.fit [1],df = t.fit [2])
    + ylab = names(dat)[j],zlab =“copule de Student”,ticktype =“detailed”,zlim = zl)
    +}

    可以考虑这个功能,

    计算三对系列的经验版本,并将其与一些参数版本进行比较,

    >

    > lambda = function(C){
    + l = function(u)pcopula(C,cbind(u,u))/ u
    + v = Vectorize(l)(u)
    + return(c(v,rev(v)))
    +}

    >

    > graph_lambda = function(i,j){
    + X = dat_res
    + U = rank(X [,i])/(nrow(X)+1)
    + V = rank(X [,j])/(nrow(X)+1)
    + normal.cop < - normalCopula(.5,dim = 2)
    + t.cop < - tCopula(.5,dim = 2,df = 3)
    + fit1 = fitCopula(normal.cop,cbind(U,V),method =“ml”)
    d(U,V),method =“ml”)
    + C1 = normalCopula(fit1 @ copula @ parameters,dim = 2)
    + C2 = tCopula(fit2 @ copula @ parameters [1],dim = 2,df = trunc(fit2 @ copula @ parameters [2]))
    +

    但人们可能想知道相关性是否随时间稳定。E:

    > time_varying_correl_2 = function(i = 1,j = 2,
    + nom_arg =“Pearson”){
    + uv = dat_arma [,c(i,j)]
    nom_arg))[1,2]
    +}

    > time_varying_correl_2(1,2)

    > time_varying_correl_2(1,2,“spearman”)

    > time_varying_correl_2(1,2,“kendall”)

    斯皮尔曼 相关

    或肯德尔 随着时间的推移

    为了模型的相关性,考虑DCC模型(S)

    > m2 = dccFit(dat_res_std)
    > m3 = dccFit(dat_res_std,type =“Engle”)
    > R2 = m2 $ rho.t
    > R3 = m3 $ rho.t

    要获得一些预测,请使用例如

    > garch11.spec = ugarchspec(mean.model = list(armaOrder = c(2,1)),variance.model = list(garchOrder = c(1,1),model =“GARCH”))
    > dcc.garch11.spec = dccspec(uspec = multispec(replicate(3,garch11.spec)),dccOrder = c(1,1),
    distribution =“mvnorm”)
    > dcc.fit = dccfit(dcc.garch11.spec,data = dat)
    > fcst = dccforecast(dcc.fit,n.ahead = 200)

    如果您有任何疑问,请在下面发表评论。 

  • 相关阅读:
    3.16 使用Zookeeper对HDFS HA配置自动故障转移及测试
    4、html的body内标签之input系列
    Gym
    Gym
    Gym
    Gym
    Gym
    Big Event in HDU HDU1171 (多重背包)
    Coins POJ 1742 多重背包部分和
    HDU 1059 Dividing 多重背包
  • 原文地址:https://www.cnblogs.com/tecdat/p/9635149.html
Copyright © 2020-2023  润新知