• R语言马尔可夫转换模型研究交通伤亡人数事故预测


    原文链接:http://tecdat.cn/?p=12227


    摘要

    本文描述了R语言中马尔克夫转换模型的分析过程。首先,对模拟数据集进行详细建模。接下来,将马尔可夫转换模型拟合到具有离散响应变量的真实数据集。用于验证对这些数据集建模的不同方法。

    模拟实例

    示例数据是一个模拟数据集,用于展示如何检测两种不同模式的存在:一种模式中的响应变量高度相关,另一种模式中的响应仅取决于外生变量x。自相关观测值的区间为1到100、151到180 和251到300。每种方案的真实模型为:


    图1中的曲线表明,在不存在自相关的区间中,响应变量y具有与协变量x相似的行为。拟合线性模型以研究协变量x如何解释变量响应y。

    > summary(mod) 
    
    Call:
    lm(formula = y ~ x, data = example)
    
    Residuals:
    
          Min 1Q Median 3Q Max
    
    -2.8998 -0.8429 -0.0427 0.7420 4.0337
    
    > plot(ts(example))


    图1:模拟数据,y变量是响应变量

    Coefficients:
    Estimate Std. Error t value Pr(>|t|)
    
    (Intercept)	9.0486	0.1398	64.709	< 2e-16 ***
    x	0.8235	0.2423	3.398	0.00077 ***
    
    Residual standard error: 1.208 on 298 degrees of freedom
    Multiple R-squared: 0.03731, Adjusted R-squared: 0.03408
    F-statistic: 11.55 on 1 and 298 DF, p-value: 0.0007701


    协变量确实很重要,但是模型解释的数据行为非常糟糕。图1中的线性模型残差图表明,它们的自相关很强。残差的诊断图(图2)确认它们似乎不是白噪声,并且具有自相关关系。接下来,将自回归马尔可夫转换模型(MSM-AR)拟合到数据。自回归部分设置为1。为了指示所有参数在两个周期中都可以不同,将转换参数(sw)设置为具有四个分量的矢量。拟合线性模型时的最后一个值称为残差。


    ​ 
    标准偏差。有一些选项可控制估算过程,例如用于指示是否完成了过程并行化的逻辑参数。

    Markov Switching Model
    
    
    AIC	BIC	logLik
    637.0736 693.479 -312.5368
    Coefficients:
    Regime 1
    ---------
    Estimate Std. Error t value	Pr(>|t|)
    (Intercept)(S)	0.8417	0.3025	2.7825	0.005394 **
    x(S)	-0.0533	0.1340 -0.3978	0.690778
    y_1(S)	0.9208	0.0306 30.0915 < 2.2e-16 ***
    ---
    Signif. codes:	0	'***' 0.001	'**' 0.01	'*' 0.05	'.' 0.1	' ' 1
    
    Residual standard error: 0.5034675
    Multiple R-squared: 0.8375
    
    Standardized Residuals:
    Min	Q1	Med	Q3	Max
    -1.5153666657 -0.0906543311	0.0001873641	0.1656717256	1.2020898986
    Regime 2
    ---------	Estimate Std. Error t value	Pr(>|t|)
    (Intercept)(S)	8.6393	0.7244 11.9261 < 2.2e-16 ***
    x(S)	1.8771	0.3107	6.0415 1.527e-09 ***
    y_1(S)	-0.0569	0.0797 -0.7139	0.4753
    ---
    Signif. codes:	0	'***' 0.001	'**' 0.01	'*' 0.05	'.' 0.1	' ' 1
    
    Residual standard error: 0.9339683
    Multiple R-squared: 0.2408
    Standardized Residuals:
    Min Q1 Med Q3 Max
    -2.31102193 -0.03317756 0.01034139 0.04509105 2.85245598
    Transition probabilities:
    Regime 1 Regime 2
    Regime 1 0.98499728 0.02290884
    Regime 2 0.01500272 0.97709116
    

    模型mod.mswm具有协方差x非常显着的状态,而在其他情况下,自相关变量也非常重要。两者的R平方均具有较高的值。最后,转移概率矩阵具有较高的值,这表明很难从接通状态更改为另一个状态。该模型可以完美地检测每个状态的周期。残差看起来像是白噪声,它们适合正态分布。而且,自相关消失了。

     

     图形显示已完美检测到每个方案的周期。

    > plot(mod.mswm,expl="x")


    交通事故

    交通数据包含2010年西班牙交通事故的每日人数,平均每日温度和每日降水量。该数据的目的是研究死亡人数与气候条件之间的关系。由于在周末和工作日变量之间存在不同的行为,因此我们说明了在这种情况下使用广义马尔科夫转换模型的情况。
    在此示例中,响应变量是计数变量。因此,我们拟合了泊松广义线性模型。

    > summary(model)
    Call:
    glm(formula = NDead ~ Temp + Prec, family = "poisson", data = traffic)


    Deviance Residuals:
    
    Min	1Q	Median	3Q	Max
    -3.1571	-1.0676	-0.2119	0.8080	3.0629
    
    Coefficients:
    Estimate Std. Error z value Pr(>|z|)
    (Intercept) 1.1638122 0.0808726 14.391 < 2e-16 ***
    Temp 0.0225513 0.0041964 5.374 7.7e-08 ***
    Prec 0.0002187 0.0001113 1.964 0.0495 *
    ---
    Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    (Dispersion parameter for poisson family taken to be 1)
    Null deviance: 597.03 on 364 degrees of freedom
    Residual deviance: 567.94 on 362 degrees of freedom
    AIC: 1755.9
    Number of Fisher Scoring iterations: 5


    下一步,使用拟合马尔可夫转换模型。为了适应广义马尔可夫转换模型,必须包含族参数,而且glm没有标准偏差参数,因此sw参数不包含其切换参数。

    > 
    Markov Switching Model
    
    
    AIC	BIC	logLik
    1713.878 1772.676 -850.9388
    Coefficients:
    Regime 1
    ---------
    Estimate Std. Error t value	Pr(>|t|)
    (Intercept)(S)	0.7649	0.1755	4.3584	1.31e-05 ***
    Temp(S)	0.0288	0.0082	3.5122 0.0004444 ***
    Prec(S)	0.0002	0.0002	1.0000 0.3173105
    ---
    Signif. codes:	0	'***' 0.001	'**' 0.01	'*' 0.05	'.' 0.1	' ' 1
    
    Regime 2
    ---------
    Estimate Std. Error t value Pr(>|t|)
    
    (Intercept)(S)	1.5659	0.1576	9.9359	< 2e-16 ***
    Temp(S)	0.0194	0.0080	2.4250	0.01531 *
    Prec(S)	0.0004	0.0002	2.0000	0.04550 *
    ---
    Signif. codes:	0	'***' 0.001	'**' 0.01	'*' 0.05	'.' 0.1	' ' 1
    
    Transition probabilities:
    Regime 1 Regime 2
    Regime 1 0.7287732 0.4913893
    Regime 2 0.2712268 0.5086107

    两种状态都有显着的协变量,但降水协变量仅在这两种状态之一中是显着的。

    
    Aproximate intervals for the coefficients. Level= 0.95
    (Intercept):
    Lower Estimation Upper
    Regime 1 0.4208398 0.7648733 1.108907
    
    Regime 2 1.2569375 1.5658582 1.874779
    Temp:
    Lower Estimation Upper
    Regime 1 0.012728077 0.02884933 0.04497059
    Regime 2 0.003708441 0.01939770 0.03508696
    Prec:
    Lower Estimation Upper
    Regime 1 -1.832783e-04 0.0001846684 0.0005526152
    Regime 2 -4.808567e-05 0.0004106061 0.0008692979



     

    由于模型是通用线性模型的扩展,因此从类对象计算出图中的Pearson残差。该残差有白噪声的经典结构。残差不是自相关的,但它们与正态分布不太吻合。但是,Pearson残差的正态性不是广义线性模型验证的关键条件。

    > plot(m1,which=2)


     

     

    我们可以看到短时间内的状态分配,因为较大的状态基本上包含工作日。

     
  • 相关阅读:
    cesium入门示例-矢量化单体分类
    cesium入门示例-3dTiles加载
    cesium入门示例-geoserver服务访问
    cesium入门示例-HelloWorld
    java中函数传值与引用问题
    jni使用问题总结
    geoserver源码学习与扩展——增加服务接口
    go-ipfs入门及介绍
    安装GoMap
    Gogeos安装
  • 原文地址:https://www.cnblogs.com/tecdat/p/12746608.html
Copyright © 2020-2023  润新知