原文链接:http://tecdat.cn/?p=12227
摘要
本文描述了R语言中马尔克夫转换模型的分析过程。首先,对模拟数据集进行详细建模。接下来,将马尔可夫转换模型拟合到具有离散响应变量的真实数据集。用于验证对这些数据集建模的不同方法。
模拟实例
示例数据是一个模拟数据集,用于展示如何检测两种不同模式的存在:一种模式中的响应变量高度相关,另一种模式中的响应仅取决于外生变量x。自相关观测值的区间为1到100、151到180 和251到300。每种方案的真实模型为:
图1中的曲线表明,在不存在自相关的区间中,响应变量y具有与协变量x相似的行为。拟合线性模型以研究协变量x如何解释变量响应y。
图1:模拟数据,y变量是响应变量
协变量确实很重要,但是模型解释的数据行为非常糟糕。图1中的线性模型残差图表明,它们的自相关很强。残差的诊断图(图2)确认它们似乎不是白噪声,并且具有自相关关系。接下来,将自回归马尔可夫转换模型(MSM-AR)拟合到数据。自回归部分设置为1。为了指示所有参数在两个周期中都可以不同,将转换参数(sw)设置为具有四个分量的矢量。拟合线性模型时的最后一个值称为残差。
模型mod.mswm具有协方差x非常显着的状态,而在其他情况下,自相关变量也非常重要。两者的R平方均具有较高的值。最后,转移概率矩阵具有较高的值,这表明很难从接通状态更改为另一个状态。该模型可以完美地检测每个状态的周期。残差看起来像是白噪声,它们适合正态分布。而且,自相关消失了。
图形显示已完美检测到每个方案的周期。
交通事故
交通数据包含2010年西班牙交通事故的每日人数,平均每日温度和每日降水量。该数据的目的是研究死亡人数与气候条件之间的关系。由于在周末和工作日变量之间存在不同的行为,因此我们说明了在这种情况下使用广义马尔科夫转换模型的情况。
在此示例中,响应变量是计数变量。因此,我们拟合了泊松广义线性模型。
下一步,使用拟合马尔可夫转换模型。为了适应广义马尔可夫转换模型,必须包含族参数,而且glm没有标准偏差参数,因此sw参数不包含其切换参数。
两种状态都有显着的协变量,但降水协变量仅在这两种状态之一中是显着的。
由于模型是通用线性模型的扩展,因此从类对象计算出图中的Pearson残差。该残差有白噪声的经典结构。残差不是自相关的,但它们与正态分布不太吻合。但是,Pearson残差的正态性不是广义线性模型验证的关键条件。
我们可以看到短时间内的状态分配,因为较大的状态基本上包含工作日。