• R语言中的Theil-Sen回归分析


    原文链接:http://tecdat.cn/?p=10080


     Theil-Sen估计器是一种在社会科学中不常用 的简单线性回归估计器  。三个步骤:

    • 在数据中所有点之间绘制一条线
    • 计算每条线的斜率
    • 中位数斜率是 回归斜率

    用这种方法计算斜率非常可靠。当误差呈正态分布且没有异常值时,斜率与OLS非常相似。 

    有几种获取截距的方法。如果 关心回归中的截距,那么知道 软件在做什么是很合理的。 

    当我对异常值和异方差性有担忧时,请在上方针对Theil-Sen进行简单线性回归的评论 。

    我进行了一次 模拟,以了解Theil-Sen如何在异方差下与OLS比较。它是更有效的估计器。

    library(simglm)
    library(ggplot2)
    library(dplyr)
    library(WRS)
    
    # Hetero
    nRep <- 100
    n.s <- c(seq(50, 300, 50), 400, 550, 750, 1000)
    samp.dat <- sample((1:(nRep*length(n.s))), 25)
    lm.coefs.0 <- matrix(ncol = 3, nrow = nRep*length(n.s))
    ts.coefs.0 <- matrix(ncol = 3, nrow = nRep*length(n.s))
    lmt.coefs.0 <- matrix(ncol = 3, nrow = nRep*length(n.s))
    dat.s <- list()
    
    
    
    ggplot(dat.frms.0, aes(x = age, y = sim_data)) +
      geom_point(shape = 1, size = .5) +
      geom_smooth(method = "lm", se = FALSE) +
      facet_wrap(~ random.sample, nrow = 5) +
      labs(x = "Predictor", y = "Outcome",
           title = "Random sample of 25 datasets from 15000 datasets for simulation",
           subtitle = "Heteroscedastic relationships")
    
    
    

    仿真结果

     
    ggplot(coefs.0, aes(x = n, colour = Estimator)) +
      geom_boxplot(
        aes(ymin = q025, lower = q25, middle = q50, upper = q75, ymax = q975), data = summarise(
          group_by(coefs.0, n, Estimator), q025 = quantile(Slope, .025),
          q25 = quantile(Slope, .25), q50 = quantile(Slope, .5),
          q75 = quantile(Slope, .75), q975 = quantile(Slope, .975)), stat = "identity") +
      geom_hline(yintercept = 2, linetype = 2) + scale_y_continuous(breaks = seq(1, 3, .05)) +
      labs(x = "Sample size", y = "Slope",
           title = "Estimation of regression slope in simple linear regression under heteroscedasticity",
           subtitle = "1500 replications - Population slope is 2",
           caption = paste(
             "Boxes are IQR, whiskers are middle 95% of slopes",
             "Both estimators are unbiased in the long run, however, OLS has higher variability",
             sep = "
    "
           ))
    
    
    
    

    来自模拟的25个随机样本

    如果您有任何疑问,请在下面发表评论。 

  • 相关阅读:
    Quote comes from C. Joybell C.
    Operating System: Three Easy Pieces --- LDE (Note)
    Operating System: Three Easy Pieces --- Pthread Locks (Note)
    Operating System: Three Easy Pieces --- Locks (Note)
    Modern Operating System --- Multiple Processor Systems
    Modern Operating System --- Power Management (CPU)
    Modern Operating System --- Power Management (Hard Disk)
    ls指定日期和时间输出格式
    python StringIO
    PING命令入门详解
  • 原文地址:https://www.cnblogs.com/tecdat/p/12188219.html
Copyright © 2020-2023  润新知