• R语言代写参数检验 :需要多少样本?如何选择样本数量


    参数检验受制于数据属性的假设。例如,学生t检验是众所周知的参数检验,假设样本均值具有正态分布。由于中心极限定理,如果样本量足够,测试也可以应用于非正态分布的测量。在这里,我们将研究t检验有效所需的大致样本数。

    将正态分布拟合到采样均值

    为了研究满足学生t检验要求所需的样本数量,我们迭代各种样本量。对于每个样本大小,我们从几个分布中抽取样本。然后,计算样本的平均值,并将正态分布拟合到平均值的分布。在每次迭代中,我们记录描述正态分布与采样均值拟合程度的对数似然。当对数似然变为正时,我们将考虑采样均值接近正态分布。

    记录拟合的概率

    调查结果,我们可以看到一些分布似乎比其他分布更快地接近正态分布:

    <span style="color:#000000"><span style="color:#000000"><code>print(result)</code></span></span>
    ##   Sample_Size      Beta     Normal        Chi    Poisson   Student
    ## 1           5  694.9139 -299.81161 -496.33474 -702.94076 -1971.203
    ## 2          10  823.0384 -126.68806 -297.08253 -515.18702 -3806.447
    ## 3          15  909.4417  -30.63266 -199.77525 -455.64737 -2119.944
    ## 4          20 1045.1414   46.45709 -136.21868 -375.75690 -2263.025
    ## 5          50 1235.7655  278.66189   84.44694 -117.56140 -3427.721
    ## 6         100 1397.7265  443.81523  281.68706   47.87537 -2178.871
    ## 7        1000 1996.2198 1019.70692  845.26837  619.25871 -3636.674
    ## 8        5000 2398.4267 1402.41433 1260.47873 1018.24454 -3231.983

    根据正对数似然,β分布产生的正态分布均值已经为5的样本大小。正态分布,卡方分布和泊松分布在样本大小分别为20,50和100时产生正态分布均值。最后,学生分布的方式永远不会正常,因为具有一个自由度的分布具有无限的峰度(非常重的尾部),使得中心极限定理不成立。

    验证对数似然标准

    作为结果的验证,让我们绘制样本大小为5的直方图和平均分布变为正常的样本大小:

    <span style="color:#000000"><span style="color:#000000"><code>plot.means(norm.means)</code></span></span>

    这些结果表明对数似然准则是正态性的充分代理。但请注意,从目视检查来看,平均值的初始贝塔分布似乎不比正态分布更正常。所以这个结果可能是用一粒盐。看看学生的t分布,我们可以看出为什么它的手段不是正态分布的:

    <span style="color:#000000"><span style="color:#000000"><code>round(quantile(means$Student), <span style="color:#880000">2</span>)</code></span></span>
    ##      0%     25%     50%     75%    100% 
    ## -495.61   -0.95    0.00    0.98 3422.66

    对于一些样本,平均分布在分布的两个尾部具有极端异常值。

    结论

    这些实验的结果表明,对于小于20的样本,绝对应该避免学生t检验。当样本量至少为100时,大多数分布似乎都满足了测试的假设。 

    总之,特别建议检查样本大小低于100的测量分布。由于中心极限定理不适用于具有无穷方差的分布,因此验证大样本大小的测量分布也是合理的。排除这种分配的可能性。正如我们在这里看到的,即使在5000的样本大小下,根据具有一个自由度的t分布分布的测量也不满足测试的假设。

    如果您有任何疑问,请在下面发表评论。 

  • 相关阅读:
    MySQL学习笔记(一)
    MySQL学习笔记(六)
    MySQL学习笔记(三)
    MySQL学习笔记(二)
    eclipse使用SSH框架出现There is no Action mapped for namespace [/] and action name [] associated with context path错误
    网页分页功能的实现
    Linux配置LNMP环境(一)配置Nginx
    Linux配置LNMP环境(二)配置PHP
    [转]在WPF的TreeView中实现右键选定
    .NET 导出到Excel功能
  • 原文地址:https://www.cnblogs.com/tecdat/p/10913628.html
Copyright © 2020-2023  润新知