• 第一个极小的机器学习的应用


      现在给出一个Web统计信息,他们存储着每小时的访问次数。每一行包含连续的小时和信息,以及该小时Web的访问次数。现在要解决的问题是,估计在何时访问量达到基础设施的极限。极限数据是每小时100000次访问。

    1.读取数据:

    # 获取数据
    filepath = r'C:UsersTDDesktopdataMachine Learning1400OS_01_Codesdataweb_traffic.tsv'
    data = sp.genfromtxt(filepath,delimiter = '	')
    x = data[:,0]
    y = data[:,1]
    

    其中,x表示小时,y表示访问量。

    2.预处理和清洗数据:

    print sp.sum(sp.isnan(y))
    

    结果显示含有8个控值,为了方便,在此处理缺失值办法是直接剔除。

    x = x[~sp.isnan(y)]
    y = y[~sp.isnan(y)]
    

    接下来,画出散点图,观察数据的规律:

    # 可视化,观察数据规律
    plt.scatter(x,y)
    plt.title('Web traffic over the last month')
    plt.xlabel('Time')
    plt.ylabel('Hits/hours')
    plt.xticks([w*24*7 for w in range(5)],
    		   ['week {}'.format(i) for i in range(5)])
    plt.autoscale(tight = True)
    plt.grid()
    plt.show()
    

    3 选择正确的模型和学习算法:

    回答原始问题需要明确以下几点:

    1)找到噪声数据后真正的模型

    2)使用这个模型预测未来,一遍解决我们的问题

    1.首先需要明白模型与实际数据区别。模型可以理解为对复杂现实世界简化的理论近似。它总会包含一些劣质的类容,这个就叫做近似误差。我们用真实数据与模型预测的数据之间的平方距离来计算这个误差,对于一个训练好的模型f,按照下面函数来计算误差:

    def error(f,x,y):
    	return sp.sum((f(x)-y)**2)
    

     2.简单的线性模型

    现在用一个线性模型来拟合上面数据,看看可以得到什么。

    plt.scatter(x,y)
    plt.title('Web traffic over the last month')
    plt.xlabel('Time')
    plt.ylabel('Hits/hours')
    plt.xticks([w*24*7 for w in range(5)],
    		   ['week {}'.format(i) for i in range(5)])
    plt.autoscale(tight = True)
    plt.grid()
    
    # 开始构建模型,使用1阶多项式拟合
    p1 = sp.polyfit(x,y,1)
    f1 = sp.poly1d(p1)  # 将拟合系数传入ployld函数创建模型函数f1
    fx = sp.linspace(0,x[-1],1000)
    plt.plot(fx,f1(fx),linewidth = 3)
    plt.legend(["d = {}".format(f1.order)], loc = "upper left")
    plt.show()
    

     

    上图显示了第一个训练的模型,发现前四个星期好像没有偏差很多,可以清楚的看到直线模型的假设是有问题的。

    3 接下来用3阶,10阶,50阶多项式来拟合:

    colors = ['g', 'k', 'b', 'm', 'r']
    
    def error(f,x,y):
    	return sp.sum((f(x)-y)**2)
    
    def plot_models(x, y, models, fname, mx = None):
        plt.clf()
        plt.scatter(x, y, s=10)
        plt.title("Web traffic over the last month")
        plt.xlabel("Time")
        plt.ylabel("Hits/hour")
        plt.xticks(
            [w * 7 * 24 for w in range(10)], ['week %i' % w for w in range(10)])
    
        if models:
            if mx is None:
                mx = sp.linspace(0, x[-1], 1000)
            for model, color in zip(models, colors):
                # print "Model:",model
                # print "Coeffs:",model.coeffs
                plt.plot(mx, model(mx), c = color,linewidth = 1.5)
    
            plt.legend(["d = {}".format(m.order) for m in models], loc="upper left")
        plt.autoscale(tight=True)
        plt.grid(True, linestyle='-', color='0.75')
        plt.savefig(fname)
    
    # create and plot models
    os.chdir(r'C:UsersTDDesktopdataMachine Learning1400OS_01_Codesdata')
    f1 = sp.poly1d(sp.polyfit(x,y,1))
    f3 = sp.poly1d(sp.polyfit(x, y, 3))
    f10 = sp.poly1d(sp.polyfit(x, y, 10))
    f50 = sp.poly1d(sp.polyfit(x, y, 50))
    plot_models(
        x, y, [f1,f3, f10, f50],"2.png")
    
    # error
    indices = [1,3,10,50]
    for index,model in zip(indices,[f1,f3,f10,f50]):
    	print 'Error d= {} : {}'.format(index,error(model,x,y))

    可以看出多项式越复杂,数据逼近越好。他们误差如下:

    Error d= 1 : 317389767.34
    Error d= 3 : 139350144.032
    Error d= 10 : 121942326.364
    Error d= 50 : 109504607.366

    看看10阶和100阶的多项式,我们发现了巨大的震荡。似乎这样拟合的太过了,他不断捕捉到背后数据的生成,还把噪声数据也考虑进去了。这样叫做过拟合。然而1阶的显然太简单了,不能反映数据的规律,这种叫做欠拟合。不管是欠拟合还是过拟合,都不适合进行预测。

    4 已退为进,另眼看数据

    观察数据,似乎第三周和第四周之间有一个拐点。这可以让我们将3.5周作为分界点,把数据分为两份,并训练出两条直线。

    plt.scatter(x, y, s=10)
    plt.title("Web traffic over the last month")
    plt.xlabel("Time")
    plt.ylabel("Hits/hour")
    plt.xticks(
    	[w * 7 * 24 for w in range(10)], ['week %i' % w for w in range(10)])
    inflection = int(3.5*7*24)
    xa = x[:inflection]
    ya = y[:inflection]
    xb = x[inflection:]
    yb = y[inflection:]
    fa = sp.poly1d(sp.polyfit(xa,ya,1))
    fb = sp.poly1d(sp.polyfit(xb,yb,1))
    plt.scatter(x,y)
    fax = sp.linspace(0,x[-1],1000)
    fbx = sp.linspace(x[inflection]/1.1,x[-1]*1.1,1000)
    plt.plot(fax,fa(fax),c = 'g',linewidth = 2.5)
    plt.plot(fbx,fb(fbx),c = 'r',linewidth = 2.5)
    plt.show()
    

     

    很明显,这两条直线组合起来似乎比之前任何模型都可以更好的拟合数据,虽然组合后的误差高于高阶多项式的误差。为什么仅仅在最后一周上更相信线性模型呢?这是因为我们认为他更好的符合未来数据。10阶和100阶多项式在此没有光明的未来,他们只是非常努力的对给定的数据进行拟合,但是他们却无法推广到将来的数据上,这就是过拟合,另外低阶模型也不能恰好的模拟数据,叫做欠拟合。

    5 训练与测试

    如果有些外来数据用于模型评估,那么仅从近似误差结果就可以判断出我们的选择的模型是好还是坏。尽管我们找不到未来数据,但是可以从现有的数据中拿出一部分,来判断我们的结果是好还是坏了。利用拐点后的数据进行训练,得到的二阶模型的误差最小,这个模型很适中,既不欠拟合也不过拟合。

    6 回答最初的问题

    得到了训练的模型。只需要带入数值就可以计算得到我们所求结果。

    实验代码:

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # __author__ : '小糖果'
    
    import scipy as sp
    import matplotlib.pyplot as plt
    from scipy.optimize import fsolve
    import os
    
    # 获取数据
    filepath = r'C:UsersTDDesktopdataMachine Learning1400OS_01_Codesdata'
    data = sp.genfromtxt(os.path.join(filepath,'web_traffic.tsv'),delimiter = '	')
    x = data[:,0]
    y = data[:,1]
    
    # 缺失数据处理,用相邻数据平均数代替
    print sp.sum(sp.isnan(y))
    x = x[~sp.isnan(y)]
    y = y[~sp.isnan(y)]
    
    colors = ['g', 'k', 'b', 'm', 'r']
    
    def error(f,x,y):
    	return sp.sum((f(x)-y)**2)
    
    def plot_model(x, y,models = None,fname = None,mx = None):
    	plt.clf()
    	plt.scatter(x,y)
    	plt.title("Web traffic over the last month")
    	plt.xlabel("Time")
    	plt.ylabel("Hits/hour")
    	plt.xticks([w*24*7 for w in range(10)],
    			   ['week {}'.format(i) for i in range(10)])
    	if models:
    		if mx is None:
    			mx = sp.linspace(0,x[-1],1000)
    		for (model,color) in zip(models,colors):
    			plt.plot(mx,model(mx),c = color,linewidth = 2)
    		plt.legend(['d = {}'.format(m.order) for m in models],loc = 'upper left')
    	plt.autoscale(tight = True)
    	plt.grid(True)
    	if fname:
    		plt.savefig(fname)
    	else:
    		plt.show()
    
    # 查看初始数据
    plot_model(x,y,fname = os.path.join(filepath,'1.jpg'))
    
    #分别用1,2,10,50阶多项式拟合
    f1 = sp.poly1d(sp.polyfit(x,y,1))
    f2 = sp.poly1d(sp.polyfit(x,y,2))
    f10 = sp.poly1d(sp.polyfit(x,y,10))
    f50 = sp.poly1d(sp.polyfit(x,y,50))
    plot_model(x,y,models = [f1,f2,f10,f50],fname = os.path.join(filepath,'2.jpg'))
    
    # 线性分段拟合
    plt.clf()
    inflection = int(3.5*7*24)
    xa = x[:inflection]
    ya = y[:inflection]
    xb = x[inflection:]
    yb = y[inflection:]
    fa = sp.poly1d(sp.polyfit(xa,ya,1))
    fb = sp.poly1d(sp.polyfit(xb,yb,1))
    plt.scatter(x,y)
    fax = sp.linspace(0,x[-1],1000)
    fbx = sp.linspace(x[inflection]/1.1,x[-1]*1.1,1000)
    plt.plot(fax,fa(fax),c = 'g',linewidth = 2.5)
    plt.plot(fbx,fb(fbx),c = 'r',linewidth = 2.5)
    plt.grid(True)
    plt.savefig(os.path.join(filepath,'3.jpg'))
    
    # 只使用后面部分数据
    f1 = sp.poly1d(sp.polyfit(xb,yb,1))
    f2 = sp.poly1d(sp.polyfit(xb,yb,2))
    f10 = sp.poly1d(sp.polyfit(xb,yb,10))
    f50 = sp.poly1d(sp.polyfit(xb,yb,50))
    plot_model(xb,yb,models = [f1,f2,f10,f50],
    		   mx = sp.linspace(xb[0],xb[-1],100),
    		   fname = os.path.join(filepath,'4,jpg'))
    
    # 求问题的解,使用二次多项式模型
    ans = fsolve(f2 - 100000,800)/7/24
    print ans
    

      

  • 相关阅读:
    利用python对新浪微博用户标签进行分词并推荐相关用户
    企业微信公众平台建设指南
    微信5.0:可定制菜单栏、移动支付、公众账号付费订阅
    jquery 控件使用 讲解 连载
    网络那些事
    拒绝访问 无法删除文件的解决方法
    Ubuntu9.10下安装Maya8.5(Finish)
    Ubuntu 9.10 更新软件源列表
    [转载]PHP的Class分页
    PHP与Mysql的连接
  • 原文地址:https://www.cnblogs.com/td15980891505/p/5996062.html
Copyright © 2020-2023  润新知