• P3768 简单的数学题


    【题目链接】

    题意分析

    \[\sum_{i=1}^n\sum_{j=1}^n(ijgcd(i,j))=\sum_{i=1}^n\sum_{j=1}^n\sum_{d=1}^n(dij)[gcd(i,j)=d]=\sum_{d=1}^nd^3\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{d}\rfloor}(ij)[gcd(i,j)=1] \]

    由于

    \[\sum_{i=1}^n\sum_{j=1}^n(ij)[gcd(i,j)=1]=\sum_{i=1}^n\sum_{j=1}^n\sum_{d|i,d|j}μ(d)(ij)=\sum_{d=1}^nμ(d)d^2\sum_{i=1}^{\frac{n}{d}}\sum_{j=1}^{\frac{n}{d}}(ij)=\sum_{d=1}^nμ(d)d^2(1+2+...+\lfloor\frac{n}{d}\rfloor)^2 \]

    所以原式转化为

    \[\sum_{d=1}^nd^3\sum_{p=1}^{\lfloor\frac{n}{d}\rfloor}μ(p)p^2(1+2+...+\lfloor\frac{n}{pd}\rfloor)^2 \]

    \[T=pd \]

    那么再一次转化为

    \[\sum_{T=1}^n(1+2+...+\lfloor\frac{n}{T}\rfloor)^2\sum_{d|T}d^3(\frac{T}{d})^2μ(\frac{T}{d})=\sum_{T=1}^n(1+2+...+\lfloor\frac{n}{T}\rfloor)^2T^2\sum_{d|T}dμ(\frac{T}{d}) \]

    由于

    \[Id(u)=u\ \ \ \ \ e(u)=[u=1]\ \ \ \ \ I(u)=1 \]

    同时

    \[μ*I=e\ \ \ φ*I=Id \]

    \[μ*I*φ=e*φ ⇒ μ*Id=φ \]

    所以原式再一次转化为

    \[\sum_{T=1}^n(1+2+...+\lfloor\frac{n}{T}\rfloor)^2T^2φ(T) \]

    左半部分使用等差数列求和公式就可以了 右半部分由于是积性函数 可以使用杜教筛

    由于

    \[\sum_{d|n}d^2φ(d)(\frac{n}{d})^2=n^2\sum_{d|n}φ(d)=n^3 \]

    所以

    \[S(n)=\sum_{i=1}^ni^2μ(i) \]

    \[S(n)=\sum_{i=1}^nn^3-\sum_{d=2}^nd^2S(\lfloor\frac{n}{d}\rfloor) \]

    好了 到此结束

    CODE:

    #include<bits/stdc++.h>
    #define M 10000080
    using namespace std;
    int tot;
    long long mod,n,ans;
    long long inv2,inv4,inv6;
    bool mark[M];
    int prime[M],phi[M];
    long long sum[M];
    map<long long,long long> vis;
    long long qpow(long long x,long long y)
    {long long tmp=1;for(;y;y>>=1,x=x*x%mod) if(y&1) tmp=tmp*x%mod;return tmp;}
    void pre()
    {
    	phi[1]=1;
    	for(int i=2;i<=10000000;++i)
    	{
    		if(!mark[i]) {prime[++tot]=i;phi[i]=i-1;}
    		for(int j=1;j<=tot&&prime[j]*i<=10000000;++j)
    		{
    			mark[prime[j]*i]=1;
    			if(i%prime[j]==0)
    			{
    				phi[prime[j]*i]=prime[j]*phi[i];
    				break;
    			}
    			else phi[prime[j]*i]=(prime[j]-1)*phi[i];
    		}
    	}
    	for(int i=1;i<=10000000;++i) sum[i]=(sum[i-1]+(long long)i*(long long)i%mod*phi[i]%mod+mod)%mod;
    	inv2=qpow(2,mod-2);
    	inv4=qpow(4,mod-2);
    	inv6=qpow(6,mod-2);
    } 
    long long GetSum(long long x)
    {
    	x%=mod;
    	long long tmp=(1+x)*x%mod*inv2%mod;
    	return tmp*tmp%mod;
    }
    long long GetSum2(long long x)
    {x%=mod;return x*(x+1)%mod*(2*x%mod+1)%mod*inv6%mod;}
    long long GetSum3(long long x)
    {x%=mod;return ((x*x%mod)*((x+1)*(x+1)%mod)%mod)*inv4%mod;}
    long long Get_Sum(long long x)
    {
    	if(x<=10000000) return sum[x];
    	if(vis.count(x)) return vis[x];
    	long long tmp=GetSum3(x);
    	for(long long l=2,r=0;l<=x;l=r+1)
    	{
    		r=x/(x/l);
    		tmp=(tmp-(GetSum2(r)-GetSum2(l-1)+mod)%mod*Get_Sum(x/l)%mod+mod)%mod;
    	}
    	return vis[x]=tmp;
    }
    int main()
    {
    	scanf("%lld%lld",&mod,&n);pre();
    	for(long long l=1,r=0;l<=n;l=r+1)
    	{
    		r=n/(n/l);
    		ans=(ans+(GetSum(n/l)*((Get_Sum(r)-Get_Sum(l-1)+mod)%mod))%mod+mod)%mod;
    	}
    	printf("%lld\n",ans);
    	return 0;
    } 
    
  • 相关阅读:
    119日报
    314日报
    126日报
    118日报
    120日报
    125日报
    124日报
    315日报
    数据一致性解决方案
    Fréchet距离度量
  • 原文地址:https://www.cnblogs.com/tcswuzb/p/14377876.html
Copyright © 2020-2023  润新知