• Python爬虫小结


    有些数据是没有专门的数据集的,为了找到神经网络训练的数据,自然而然的想到了用爬虫的方法开始采集数据。一开始采用了网上的一个动态爬虫的代码,发现爬取的图片大多是重复的,有效图片很少。

    动态爬虫:

     
    from lxml import etree
    import requests
    import re
    import urllib
    import json
    import time
    import os
     
    local_path = '/home/path/'
    if not os.path.exists(local_path):
        os.makedirs(local_path)
    keyword = input('请输入想要搜索图片的关键字:')
    first_url = 'http://image.baidu.com/search/flip?tn=baiduimage&ipn=r&ct=201326592&cl=2&lm=-1&st=-1&fm=result&fr=&sf=1&fmq=1530850407660_R&pv=&ic=0&nc=1&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&ie=utf-8&ctd=1530850407660%5E00_1651X792&word={}'.format(keyword)
    want_download = input('请输入想要下载图片的张数:')
     
    global page_num
    page_num = 1
    global download_num
    download_num = 0
     
    #这个函数用来获取图片格式
    def get_format(pic_url):
        #url的末尾存着图片的格式,用split提取
        #有些url末尾并不是常见图片格式,此时用jpg补全
        t = pic_url.split('.')
        if t[-1].lower() != 'bmp' and t[-1].lower() != 'gif' and t[-1].lower() != 'jpg' and t[-1].lower() != 'png':
            pic_format = 'jpg'
        else:
            pic_format = t[-1]
        return pic_format
     
    #这个函数用来获取下一页的url
    def get_next_page(page_url):
        global page_num
        html = requests.get(page_url).text
        with open('html_info.txt', 'w', encoding='utf-8') as h:
            h.write(html)
        selector = etree.HTML(html)
        try:
            msg = selector.xpath('//a[@class="n"]/@href')
            print(msg[0])
            next_page = 'http://image.baidu.com/' + msg[0]
            print('现在是第%d页' % (page_num + 1))
        except Exception as e:
            print('已经没有下一页了')
            print(e)
            next_page = None
        page_num = page_num + 1
        return next_page
     
    #这个函数用来下载并保存图片
    def download_img(pic_urls):
        count = 1
        global download_num
        for i in pic_urls:
            time.sleep(1)
            try:
                pic_format = get_format(i)
                pic = requests.get(i, timeout=15)
                #按照格式和名称保存图片
                with open(local_path + 'page%d_%d.%s' % (page_num, count, pic_format), 'wb') as f:
                    f.write(pic.content)
                    #print('成功下载第%s张图片: %s' % (str(count), str(pic.url)))
                    count = count + 1
                    download_num = download_num + 1
            except Exception as e:
                #print('下载第%s张图片时失败: %s' % (str(count), str(pic.url)))
                print(e)
                count = count + 1
                continue
            finally:
                if int(want_download) == download_num:
                    return 0
     
    #这个函数用来提取url中图片的url
    def get_pic_urls(web_url):
        html = requests.get(web_url).text
        #通过正则表达式寻找图片的地址,
        pic_urls = re.findall('"objURL":"(.*?)",', html, re.S)
        #返回图片地址,是一个list
        return pic_urls
     
    if __name__ == "__main__":
        while True:
            pic_urls = get_pic_urls(first_url)
            t = download_img(pic_urls)
            if t==0:
                break
            next_url = get_next_page(first_url)
            if next_url == None:
                print('已经没有更多图片')
                break
            pic_urls = get_pic_urls(next_url)
            t = download_img(pic_urls)
            if t== 0:
                break
            first_url = next_url
        #print('已经成功下载%d张图片' %download_num)

    为了筛选出重复的图片又采用了哈希算法进行去重

     1 # -*- coding: utf-8 -*-
     2 
     3 import sys
     4 reload(sys)
     5 sys.setdefaultencoding('utf8')
     6 
     7 """
     8 用dhash判断是否相同照片
     9 基于渐变比较的hash
    10 hash可以省略(本文省略)
    11 By Guanpx
    12 """
    13 import os
    14 from PIL import Image
    15 from os import listdir
    16 
    17 
    18 def picPostfix():  # 相册后缀的集合
    19     postFix = set()
    20     postFix.update(['bmp', 'jpg', 'png', 'tiff', 'gif', 'pcx', 'tga', 'exif',
    21                     'fpx', 'svg', 'psd', 'cdr', 'pcd', 'dxf', 'ufo', 'eps', 'JPG', 'raw', 'jpeg'])
    22     return postFix
    23 
    24 
    25 def getDiff(width, high, image):  # 将要裁剪成w*h的image照片 
    26     diff = []
    27     im = image.resize((width, high))
    28     imgray = im.convert('L')  # 转换为灰度图片 便于处理
    29     pixels = list(imgray.getdata())  # 得到像素数据 灰度0-255
    30 
    31     for row in range(high): # 逐一与它左边的像素点进行比较
    32         rowStart = row * width  # 起始位置行号
    33         for index in range(width - 1):
    34             leftIndex = rowStart + index  
    35             rightIndex = leftIndex + 1  # 左右位置号
    36             diff.append(pixels[leftIndex] > pixels[rightIndex])
    37 
    38     return diff  #  *得到差异值序列 这里可以转换为hash码*
    39 
    40 
    41 def getHamming(diff=[], diff2=[]):  # 暴力计算两点间汉明距离
    42     hamming_distance = 0
    43     for i in range(len(diff)):
    44         if diff[i] != diff2[i]:
    45             hamming_distance += 1
    46 
    47     return hamming_distance
    48 
    49 
    50 if __name__ == '__main__':
    51 
    52     width = 32
    53     high = 32  # 压缩后的大小
    54     dirName = "/home/yourpath"  # 相册路径
    55     allDiff = []
    56     postFix = picPostfix()  #  图片后缀的集合
    57 
    58     dirList = os.listdir(dirName)
    59     cnt = 0
    60     for i in dirList:
    61         cnt += 1
    62         # print('文件处理的数量是', cnt)  # 可以不打印 表示处理的文件计数
    63         if str(i).split('.')[-1] in postFix:  # 判断后缀是不是照片格式
    64             try:
    65                 im = Image.open(r'%s/%s' % (dirName, unicode(str(i), "utf-8")))
    66             except OSError as err:
    67                 os.remove(r'%s/%s' % (dirName, unicode(str(i), "utf-8")))
    68                 print('OS error : {}'.format(err))
    69                 # continue
    70 
    71             except IndexError as err:
    72                 os.remove(r'%s/%s' % (dirName, unicode(str(i), "utf-8")))
    73                 print('OS error : {}'.format(err))
    74                 print('Index Error: {}'.format(err))
    75                 # continue
    76 
    77 
    78             except IOError as err:
    79                 os.remove(r'%s/%s' % (dirName, unicode(str(i), "utf-8"))) # 删除图片
    80                 # print('OS error : {}'.format(err))
    81                 print('IOError : {}'.format(err))
    82                 # continue
    83 
    84             # except:
    85             #     print ('Other error')
    86             else:
    87                 diff = getDiff(width, high, im)
    88                 allDiff.append((str(i), diff))
    89 
    90             
    91     for i in range(len(allDiff)):
    92         for j in range(i + 1, len(allDiff)):
    93             if i != j:
    94                 ans = getHamming(allDiff[i][1], allDiff[j][1])
    95                 if ans <= 5:  # 判别的汉明距离,自己根据实际情况设置
    96                     print(allDiff[i][0], "and", allDiff[j][0], "maybe same photo...")
    97                     result = dirName + "/" + allDiff[j][0]
    98                     if os.path.exists(result):
    99                         os.remove(result)

    用哈希算法筛选后又发现筛除的太多了,阈值不好控制。又尝试采用了静态爬虫的方法,发现结果还不错,重复的也不多,也就省了筛除的步骤。

    静态爬虫:

      1 # -*- coding: utf-8 -*-
      2 import sys
      3 reload(sys)
      4 sys.setdefaultencoding('utf8')
      5 import time
      6 # 导入需要的库
      7 import requests
      8 # import os
      9 import json
     10 import time
     11 
     12 # 爬取百度图片,解析页面的函数
     13 def getManyPages(keyword, pages):
     14     '''
     15     参数keyword:要下载的影像关键词
     16     参数pages:需要下载的页面数
     17     '''
     18     params = []
     19 
     20     for i in range(30, 30 * pages + 30, 30):
     21         params.append({
     22             'tn': 'resultjson_com',
     23             'ipn': 'rj',
     24             'ct': 201326592,
     25             'is': '',
     26             'fp': 'result',
     27             'queryWord': keyword,
     28             'cl': 2,
     29             'lm': -1,
     30             'ie': 'utf-8',
     31             'oe': 'utf-8',
     32             'adpicid': '',
     33             'st': -1,
     34             'z': '',
     35             'ic': 0,
     36             'word': keyword,
     37             's': '',
     38             'se': '',
     39             'tab': '',
     40             'width': '',
     41             'height': '',
     42             'face': 0,
     43             'istype': 2,
     44             'qc': '',
     45             'nc': 1,
     46             'fr': '',
     47             'pn': i,
     48             'rn': 30,
     49             'gsm': '1e',
     50             '1488942260214': ''
     51         })
     52     url = 'https://image.baidu.com/search/acjson'
     53     urls = []
     54     for i in params:
     55         try:
     56             urls.append(requests.get(url, params=i).json().get('data'))
     57         # except json.decoder.JSONDecodeError:
     58         #     print("解析出错")
     59 
     60         except OSError as err:
     61             print('OS error : {}'.format(err))
     62 
     63         except IndexError as err:
     64             print('Index Error: {}'.format(err))
     65 
     66         except IOError as err:
     67             print('IOError : {}'.format(err))
     68         except:
     69             print('Other error')
     70     return urls
     71 
     72 
     73 # 下载图片并保存
     74 def getImg(dataList, localPath):
     75     '''
     76     参数datallist:下载图片的地址集
     77     参数localPath:保存下载图片的路径
     78     '''
     79     if not os.path.exists(localPath):  # 判断是否存在保存路径,如果不存在就创建
     80         os.mkdir(localPath)
     81     x = 0
     82     for list in dataList:
     83         for i in list:
     84             if i.get('thumbURL') != None:
     85                 # print('正在下载:%s' % i.get('thumbURL'))
     86                 ir = requests.get(i.get('thumbURL'))
     87                 open(localPath + '/' + '%d.jpg' % x, 'wb').write(ir.content)  # 这里是新加的斜杠
     88                 x += 1
     89             else:
     90                 print('图片链接不存在')
     91 
     92 
     93 # 根据关键词来下载图片
     94 if __name__ == '__main__':
     95     import os
     96     father_path = "/home/yourpath/"
     97     t0 = time.time()
     98     for init in os.listdir(father_path):
     99         print('init is{}'.format(str(init)))
    100         for name in os.listdir(init):
    101             print('name is{}'.format(str(name)))
    102             t1 = time.time()
    103             if not os.listdir(os.path.join(father_path, init, name)):
    104                 dataList = getManyPages(name, 30)
    105                 getImg(dataList, os.path.join(father_path, init, name))
    106             t2 = time.time()
    107             print('cost time is', t2 - t1)
    108     t3 = time.time()
    109     print('total time is', t3 - t0)
    110     # t1 = time.time()
    111     # dataList = getManyPages('keyword', page
    112 _number)  # 参数1:关键字,参数2:要下载的页数
    113     # getImg(dataList, './file_path/')  # 参数2:指定保存的路径
    114     # t2 = time.time()
    115     # print('cost time is', t2 - t1)
    116     #
    117     # parent_name = "/home/path"  # 相册路径
    118     # dirList = os.listdir(parent_name)  # 所有文件夹的列表
    119     # for one_file in dirList:  # 其中的一个文件夹
    120     #     # son_list = os.listdir(one_file)
    121     #     son_list = os.path.join(parent_name, one_file)
    122     #     son_file = os.listdir(son_list)
    123     #     t1 = time.time()
  • 相关阅读:
    使用360安全卫士在线对本机电脑进行重装系统
    分享个人电脑上的文件
    Docker初探之运行RabbitMQ消息队列服务
    Docker初探之运行MySQL
    Docker初探之常用命令实践
    Docker初探之Windows篇
    SignalR入门之多平台SignalR服务端
    SignalR入门之从外部访问持久性连接或Hub
    SignalR入门之Hub
    SignalR入门之小试身手
  • 原文地址:https://www.cnblogs.com/tay007/p/11155490.html
Copyright © 2020-2023  润新知