• uva 1349 Optimal Bus Route Design(拆点,费用流)


    题目链接

    题意:给出(n(1 leq n leq 100))个点,每个点与其他一些点相连,边上有权值,现在需要选一些边将所有点包括在一个环内(有且仅有一个环包含每个点,可以有多个环),使得所选边权值之和最小。

    题解:对于每个点存在唯一环包括他,等价于每个点存在唯一后继,对于唯一性,可以想到二分图,将原来每个点拆为两个点,然后加个源和汇s,t,在将边权转化为费用跑费用流就行了。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<vector>
    #include<queue>
    #include<stack>
    using namespace std;
    #define rep(i,a,n) for (int i=a;i<n;i++)
    #define per(i,a,n) for (int i=n-1;i>=a;i--)
    #define pb push_back
    #define fi first
    #define se second
    typedef vector<int> VI;
    typedef long long ll;
    typedef pair<int,int> PII;
    const int inf=0x3fffffff;
    const ll mod=1000000007;
    const int MAXN =200+10;
    const int MAXM = 21000;
    const int INF = 1e9;
    struct Edge
    {
        int to,next,cap,flow,cost;
    }edge[MAXM];
    int head[MAXN],tol;
    int pre[MAXN],dis[MAXN];
    bool vis[MAXN];
    int N;//节点总个数,节点编号从0~N-1
    
    void addedge(int u,int v,int cap,int cost)
    {
        edge[tol].to = v;edge[tol].cap = cap;edge[tol].cost = cost;edge[tol].flow = 0;
        edge[tol].next = head[u];head[u] = tol++;
        edge[tol].to = u;edge[tol].cap = 0;edge[tol].cost = -cost;edge[tol].flow = 0;
        edge[tol].next = head[v];head[v] = tol++;
    }
    
    
    bool spfa(int s,int t)
    {
        queue<int> q;
        for(int i = 0;i < N;i++)
        {
            dis[i] = INF;
            vis[i] = false;
            pre[i] = -1;
        }
        dis[s] = 0;
        vis[s] = true;
        q.push(s);
        while(!q.empty())
        {
            int u = q.front();
            q.pop();
            vis[u] = false;
            for(int i = head[u]; i != -1;i = edge[i].next)
            {
                int v = edge[i].to;
                if(edge[i].cap > edge[i].flow &&
                   dis[v] > dis[u] + edge[i].cost )
                {
                    dis[v] = dis[u] + edge[i].cost;
                    pre[v] = i;
                    if(!vis[v])
                    {
                        vis[v] = true;
                        q.push(v);
                    }
                }
            }
        }
        if(pre[t] == -1)return false;
        else return true;
    }
    //返回的是最大流,cost存的是最小费用
    int minCostMaxflow(int s,int t,int &cost)
    {
        int flow = 0;
        cost = 0;
        while(spfa(s,t))
        {
            int Min = INF;
            for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
            {
                if(Min > edge[i].cap - edge[i].flow)
                    Min = edge[i].cap - edge[i].flow;
            }
            for(int i = pre[t];i != -1;i = pre[edge[i^1].to])
            {
                edge[i].flow += Min;
                edge[i^1].flow -= Min;
                cost += edge[i].cost * Min;
            }
            flow += Min;
        }
        return flow;
    }
    
    
    int main()
    {
        int n;
        while(~scanf("%d",&n)&&n)
        {
            int st=0,ed=2*n+1;
            N=ed+1;
            tol=0;
            rep(i,0,ed+1) head[i]=-1;
            rep(i,1,n+1)
            {
                int p;
                while(~scanf("%d",&p))
                {
                    if(!p) break;
                    int w;
                    scanf("%d",&w);
                    addedge(i,n+p,1,w);
                }
            }
            rep(i,1,n+1) addedge(st,i,1,0),addedge(n+i,ed,1,0);
            int cost=0;
            int t=minCostMaxflow(st,ed,cost);
            if(t<n) puts("N");
            else printf("%d
    ",cost);
        }
        return 0;
    }
    
  • 相关阅读:
    阿里轻量应用服务器 Tomcat 注意的地方 Unsupported major.minor version 52.0(unable to load class
    微信小程序-进度条循环播放
    微信小程序-动画
    微信小程序-自定义分享
    微信小程序-引导页
    微信小程序-时间轴
    微信小程序-两次点击不同图片交换图片位置
    Kafka消费者——消费者客户端多线程实现
    Kakfa消费者——原理及分析
    Kafka基础——Kafka架构
  • 原文地址:https://www.cnblogs.com/tarjan/p/7350804.html
Copyright © 2020-2023  润新知