• 【LeetCode】代码模板,刷题必会


    二分查找

    最明显的题目就是34. Find First and Last Position of Element in Sorted Array

    花花酱的二分查找专题视频:https://www.youtube.com/watch?v=v57lNF2mb_s

    模板:

    区间定义:[l, r) 左闭右开

    其中f(m)函数代表找到了满足条件的情况,有这个条件的判断就返回对应的位置,如果没有这个条件的判断就是lowwer_bound和higher_bound.

    def binary_search(l, r):
        while l < r:
            m = l + (r - l) // 2
            if f(m):    # 判断找了没有,optional
                return m
            if g(m):
                r = m   # new range [l, m)
            else:
                l = m + 1 # new range [m+1, r)
        return l    # or not found
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    lower bound: find index of i, such that A[i] >= x

    def lowwer_bound(self, nums, target):
        # find in range [left, right)
        left, right = 0, len(nums)
        while left < right:
            mid = left + (right - left) // 2
            if nums[mid] < target:
                left = mid + 1
            else:
                right = mid
        return left
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    upper bound: find index of i, such that A[i] > x

    def higher_bound(self, nums, target):
        # find in range [left, right)
        left, right = 0, len(nums)
        while left < right:
            mid = left + (right - left) // 2
            if nums[mid] <= target:
                left = mid + 1
            else:
                right = mid
        return left
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    比如,题目69. Sqrt(x)

    class Solution(object):
        def mySqrt(self, x):
            """
            :type x: int
            :rtype: int
            """
            left, right = 0, x + 1
            # [left, right)
            while left < right:
                mid = left + (right - left) // 2
                if mid ** 2 == x:
                    return mid
                if mid ** 2 < x:
                    left = mid + 1
                else:
                    right = mid
            return left - 1
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    排序的写法

    C++的排序方法,使用sort并且重写comparator,如果需要使用外部变量,需要在中括号中放入&。

    题目451. Sort Characters By Frequency。

    class Solution {
    public:
        string frequencySort(string s) {
            unordered_map<char, int> m;
            for (char c : s) ++m[c];
            sort(s.begin(), s.end(), [&](char& a, char& b){
                return m[a] > m[b] || (m[a] == m[b] && a < b);
            });
            return s;
        }
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    BFS的写法

    下面的这个写法是在一个邻接矩阵中找出离某一个点距离是k的点。

    来自文章:【LeetCode】863. All Nodes Distance K in Binary Tree 解题报告(Python)

    # BFS
    bfs = [target.val]
    visited = set([target.val])
    for k in range(K):
        bfs = [y for x in bfs for y in conn[x] if y not in visited]
        visited |= set(bfs)
    return bfs
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    1. Word Ladder

    在BFS中保存已走过的步,并把已经走的合法路径删除掉。

    class Solution(object):
        def ladderLength(self, beginWord, endWord, wordList):
            """
            :type beginWord: str
            :type endWord: str
            :type wordList: List[str]
            :rtype: int
            """
            wordset = set(wordList)
            bfs = collections.deque()
            bfs.append((beginWord, 1))
            while bfs:
                word, length = bfs.popleft()
                if word == endWord:
                    return length
                for i in range(len(word)):
                    for c in "abcdefghijklmnopqrstuvwxyz":
                        newWord = word[:i] + c + word[i + 1:]
                        if newWord in wordset and newWord != word:
                            wordset.remove(newWord)
                            bfs.append((newWord, length + 1))
            return 0
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    778. Swim in Rising Water

    使用优先级队列来优先走比较矮的路,最后保存最高的那个格子的高度。

    class Solution(object):
        def swimInWater(self, grid):
            """
            :type grid: List[List[int]]
            :rtype: int
            """
            n = len(grid)
            visited, pq = set((0, 0)), [(grid[0][0], 0, 0)]
            res = 0
            while pq:
                T, i, j = heapq.heappop(pq)
                res = max(res, T)
                directions = [(0, 1), (0, -1), (-1, 0), (1, 0)]
                if i == j == n - 1:
                    break
                for dir in directions:
                    x, y = i + dir[0], j + dir[1]
                    if x < 0 or x >= n or y < 0 or y >= n or (x, y) in visited:
                        continue
                    heapq.heappush(pq, (grid[x][y], x, y))
                    visited.add((x, y))
            return res
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    847. Shortest Path Visiting All Nodes

    需要找出某顶点到其他顶点的最短路径。出发顶点不是确定的,每个顶点有可能访问多次。使用N位bit代表访问过的顶点的状态。如果到达了最终状态,那么现在步数就是所求。这个题把所有的节点都放入了起始队列中,相当于每次都是所有的顶点向前走一步。

    class Solution(object):
        def shortestPathLength(self, graph):
            """
            :type graph: List[List[int]]
            :rtype: int
            """
            N = len(graph)
            que = collections.deque()
            step = 0
            goal = (1 << N) - 1
            visited = [[0 for j in range(1 << N)] for i in range(N)]
            for i in range(N):
                que.append((i, 1 << i))
            while que:
                s = len(que)
                for i in range(s):
                    node, state = que.popleft()
                    if state == goal:
                        return step
                    if visited[node][state]:
                        continue
                    visited[node][state] = 1
                    for nextNode in graph[node]:
                        que.append((nextNode, state | (1 << nextNode)))
                step += 1
            return step
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    429. N-ary Tree Level Order Traversal多叉树的层次遍历,这个BFS写法我觉得很经典。适合记忆。

    """
    # Definition for a Node.
    class Node(object):
        def __init__(self, val, children):
            self.val = val
            self.children = children
    """
    class Solution(object):
        def levelOrder(self, root):
            """
            :type root: Node
            :rtype: List[List[int]]
            """
            res = []
            que = collections.deque()
            que.append(root)
            while que:
                level = []
                size = len(que)
                for _ in range(size):
                    node = que.popleft()
                    if not node:
                        continue
                    level.append(node.val)
                    for child in node.children:
                        que.append(child)
                if level:
                    res.append(level)
            return res
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    DFS的写法

    329. Longest Increasing Path in a Matrix

    417. Pacific Atlantic Water Flow

    778. Swim in Rising Water

    二分查找+DFS

    class Solution(object):
        def swimInWater(self, grid):
            """
            :type grid: List[List[int]]
            :rtype: int
            """
            n = len(grid)
            left, right = 0, n * n - 1
            while left <= right:
                mid = left + (right - left) / 2
                if self.dfs([[False] * n for _ in range(n)], grid, mid, n, 0, 0):
                    right = mid - 1
                else:
                    left = mid + 1
            return left
            
        def dfs(self, visited, grid, mid, n, i, j):
            visited[i][j] = True
            if i == n - 1 and j == n - 1:
                return True
            directions = [(0, 1), (0, -1), (-1, 0), (1, 0)]
            for dir in directions:
                x, y = i + dir[0], j + dir[1]
                if x < 0 or x >= n or y < 0 or y >= n or visited[x][y] or max(mid, grid[i][j]) != max(mid, grid[x][y]):
                    continue
                if self.dfs(visited, grid, mid, n, x, y):
                    return True
            return False
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    回溯法

    下面这个题使用了回溯法,但是写的不够简单干练,遇到更好的解法的时候,要把这个题进行更新。

    这个回溯思想,先去添加一个新的状态,看在这个状态的基础上,能不能找结果,如果找不到结果的话,那么就回退,即把这个结果和访问的记录给去掉。这个题使用了return True的方法让我们知道已经找出了结果,所以不用再递归了。

    753. Cracking the Safe

    class Solution(object):
        def crackSafe(self, n, k):
            """
            :type n: int
            :type k: int
            :rtype: str
            """
            res = ["0"] * n
            size = k ** n
            visited = set()
            visited.add("".join(res))
            if self.dfs(res, visited, size, n, k):
                return "".join(res)
            return ""
            
        def dfs(self, res, visited, size, n, k):
            if len(visited) == size:
                return True
            node = "".join(res[len(res) - n + 1:])
            for i in range(k):
                node = node + str(i)
                if node not in visited:
                    res.append(str(i))
                    visited.add(node)
                    if self.dfs(res, visited, size, n, k):
                        return True
                    res.pop()
                    visited.remove(node)
                node = node[:-1]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29

    312. Burst Balloons

    class Solution(object):
        def maxCoins(self, nums):
            """
            :type nums: List[int]
            :rtype: int
            """
            n = len(nums)
            nums.insert(0, 1)
            nums.append(1)
            c = [[0] * (n + 2) for _ in range(n + 2)]
            return self.dfs(nums, c, 1, n)
            
        def dfs(self, nums, c, i, j):
            if i > j: return 0
            if c[i][j] > 0: return c[i][j]
            if i == j: return nums[i - 1] * nums[i] * nums[i + 1]
            res = 0
            for k in range(i, j + 1):
                res = max(res, self.dfs(nums, c, i, k - 1) + nums[i - 1] * nums[k] * nums[j + 1] + self.dfs(nums, c, k + 1, j))
            c[i][j] = res
            return c[i][j]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    class Solution {
    public:
        int countArrangement(int N) {
            int res = 0;
            vector<int> visited(N + 1, 0);
            helper(N, visited, 1, res);
            return res;
        }
    private:
        void helper(int N, vector<int>& visited, int pos, int& res) {
            if (pos > N) {
                res++;
                return;
            }
            for (int i = 1; i <= N; i++) {
                if (visited[i] == 0 && (i % pos == 0 || pos % i == 0)) {
                    visited[i] = 1;
                    helper(N, visited, pos + 1, res);
                    visited[i] = 0;
                }
            }
        }
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    如果需要保存路径的回溯法:

    class Solution {
    public:
        vector<vector<int>> permute(vector<int>& nums) {
            const int N = nums.size();
            vector<vector<int>> res;
            vector<int> path;
            vector<int> visited(N, 0);
            dfs(nums, 0, visited, res, path);
            return res;
        }
    private:
        void dfs(vector<int>& nums, int pos, vector<int>& visited, vector<vector<int>>& res, vector<int>& path) {
            const int N = nums.size();
            if (pos == N) {
                res.push_back(path);
                return;
            }
            for (int i = 0; i < N; i++) {
                if (!visited[i]) {
                    visited[i] = 1;
                    path.push_back(nums[i]);
                    dfs(nums, pos + 1, visited, res, path);
                    path.pop_back();
                    visited[i] = 0;
                }
            }
        }
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    递归

    617. Merge Two Binary Trees把两个树重叠,重叠部分求和,不重叠部分是两个树不空的节点。

    class Solution:
        def mergeTrees(self, t1, t2):
            if not t2:
                return t1
            if not t1:
                return t2
            newT = TreeNode(t1.val + t2.val)
            newT.left = self.mergeTrees(t1.left, t2.left)
            newT.right = self.mergeTrees(t1.right, t2.right)
            return newT
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    迭代

    226. Invert Binary Tree

    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
        def invertTree(self, root):
            """
            :type root: TreeNode
            :rtype: TreeNode
            """
            stack = []
            stack.append(root)
            while stack:
                node = stack.pop()
                if not node:
                    continue
                node.left, node.right = node.right, node.left
                stack.append(node.left)
                stack.append(node.right)
            return root
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    前序遍历

    144. Binary Tree Preorder Traversal

    迭代写法:

    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
        def preorderTraversal(self, root):
            """
            :type root: TreeNode
            :rtype: List[int]
            """
            if not root: return []
            res = []
            stack = []
            stack.append(root)
            while stack:
                node = stack.pop()
                if not node:
                    continue
                res.append(node.val)
                stack.append(node.right)
                stack.append(node.left)
            return res
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    中序遍历

    94. Binary Tree Inorder Traversal

    迭代写法:

    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class Solution(object):
        def inorderTraversal(self, root):
            """
            :type root: TreeNode
            :rtype: List[int]
            """
            stack = []
            answer = []
            while True:
                while root:
                    stack.append(root)
                    root = root.left
                if not stack:
                    return answer
                root = stack.pop()
                answer.append(root.val)
                root = root.right
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    后序遍历

    145. Binary Tree Postorder Traversal

    迭代写法如下:

    /**
     * Definition for a binary tree node.
     * struct TreeNode {
     *     int val;
     *     TreeNode *left;
     *     TreeNode *right;
     *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
     * };
     */
    class Solution {
    public:
        vector<int> postorderTraversal(TreeNode* root) {
            vector<int> res;
            if (!root) return res;
            stack<TreeNode*> st;
            st.push(root);
            while (!st.empty()) {
                TreeNode* node = st.top(); st.pop();
                if (!node) continue;
                res.push_back(node->val);
                st.push(node->left);
                st.push(node->right);
            }
            reverse(res.begin(), res.end());
            return res;
        }
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    构建完全二叉树

    完全二叉树是每一层都满的,因此找出要插入节点的父亲节点是很简单的。如果用数组tree保存着所有节点的层次遍历,那么新节点的父亲节点就是tree[(N -1)/2],N是未插入该节点前的树的元素个数。
    构建树的时候使用层次遍历,也就是BFS把所有的节点放入到tree里。插入的时候直接计算出新节点的父亲节点。获取root就是数组中的第0个节点。

    919. Complete Binary Tree Inserter

    # Definition for a binary tree node.
    # class TreeNode(object):
    #     def __init__(self, x):
    #         self.val = x
    #         self.left = None
    #         self.right = None
    
    class CBTInserter(object):
    
        def __init__(self, root):
            """
            :type root: TreeNode
            """
            self.tree = list()
            queue = collections.deque()
            queue.append(root)
            while queue:
                node = queue.popleft()
                self.tree.append(node)
                if node.left:
                    queue.append(node.left)
                if node.right:
                    queue.append(node.right)
    
        def insert(self, v):
            """
            :type v: int
            :rtype: int
            """
            _len = len(self.tree)
            father = self.tree[(_len - 1) / 2]
            node = TreeNode(v)
            if not father.left:
                father.left = node
            else:
                father.right = node
            self.tree.append(node)
            return father.val
            
    
        def get_root(self):
            """
            :rtype: TreeNode
            """
            return self.tree[0]
    
    
    # Your CBTInserter object will be instantiated and called as such:
    # obj = CBTInserter(root)
    # param_1 = obj.insert(v)
    # param_2 = obj.get_root()
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51

    并查集

    不包含rank的话,代码很简短,应该背会。

    1. Accounts Merge
      https://leetcode.com/articles/accounts-merge/
    class DSU:
        def __init__(self):
            self.par = range(10001)
    
        def find(self, x):
            if x != self.par[x]:
                self.par[x] = self.find(self.par[x])
            return self.par[x]
        
        def union(self, x, y):
            self.par[self.find(x)] = self.find(y)
        
        def same(self, x, y):
            return self.find(x) == self.find(y)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    C++版本如下:

    vector<int> map_; //i的parent,默认是i
    int f(int a) {
        if (map_[a] == a)
            return a;
        return f(map_[a]);
    }
    void u(int a, int b) {
        int pa = f(a);
        int pb = f(b);
        if (pa == pb)
            return;
        map_[pa] = pb;
    }
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    包含rank的,这里的rank表示树的高度:

    684. Redundant Connection

    class DSU(object):
        def __init__(self):
            self.par = range(1001)
            self.rnk = [0] * 1001
    
        def find(self, x):
            if self.par[x] != x:
                self.par[x] = self.find(self.par[x])
            return self.par[x]
    
        def union(self, x, y):
            xr, yr = self.find(x), self.find(y)
            if xr == yr:
                return False
            elif self.rnk[xr] < self.rnk[yr]:
                self.par[xr] = yr
            elif self.rnk[xr] > self.rnk[yr]:
                self.par[yr] = xr
            else:
                self.par[yr] = xr
                self.rnk[xr] += 1
            return True
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    另外一种rank方法是,保存树中节点的个数。

    547. Friend Circles,代码如下:

    class Solution(object):
        def findCircleNum(self, M):
            """
            :type M: List[List[int]]
            :rtype: int
            """
            dsu = DSU()
            N = len(M)
            for i in range(N):
                for j in range(i, N):
                    if M[i][j]:
                        dsu.u(i, j)
            res = 0
            for i in range(N):
                if dsu.f(i) == i:
                    res += 1
            return res
            
    class DSU(object):
        def __init__(self):
            self.d = range(201)
            self.r = [0] * 201
            
        def f(self, a):
            return a if a == self.d[a] else self.f(self.d[a])
        
        def u(self, a, b):
            pa = self.f(a)
            pb = self.f(b)
            if (pa == pb):
                return
            if self.r[pa] < self.r[pb]:
                self.d[pa] = pb
                self.r[pb] += self.r[pa]
            else:
                self.d[pb] = pa
                self.r[pa] += self.r[pb]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37

    前缀树

    前缀树的题目可以使用字典解决,代码还是需要背一下的,C++版本的前缀树如下:

    208. Implement Trie (Prefix Tree)这个题是纯考Trie的。参考代码如下:

    class TrieNode {
    public:
        vector<TrieNode*> child;
        bool isWord;
        TrieNode() : isWord(false), child(26, nullptr) {
        }
        ~TrieNode() {
            for (auto& c : child)
                delete c;
        }
    };
    
    class Trie {
    public:
        /** Initialize your data structure here. */
        Trie() {
            root = new TrieNode();
        }
        
        /** Inserts a word into the trie. */
        void insert(string word) {
            TrieNode* p = root;
            for (char a : word) {
                int i = a - 'a';
                if (!p->child[i])
                    p->child[i] = new TrieNode();
                p = p->child[i];
            }
            p->isWord = true;
        }
        
        /** Returns if the word is in the trie. */
        bool search(string word) {
            TrieNode* p = root;
            for (char a : word) {
                int i = a - 'a';
                if (!p->child[i])
                    return false;
                p = p->child[i];
            }
            return p->isWord;
        }
        
        /** Returns if there is any word in the trie that starts with the given prefix. */
        bool startsWith(string prefix) {
            TrieNode* p = root;
            for (char a : prefix) {
                int i = a - 'a';
                if (!p->child[i])
                    return false;
                p = p->child[i];
            }
            return true;
        }
    private:
        TrieNode* root;
    };
    
    /**
     * Your Trie object will be instantiated and called as such:
     * Trie obj = new Trie();
     * obj.insert(word);
     * bool param_2 = obj.search(word);
     * bool param_3 = obj.startsWith(prefix);
     */
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65

    677. Map Sum Pairs

    class MapSum {
    public:
        /** Initialize your data structure here. */
        MapSum() {}
        
        void insert(string key, int val) {
            int inc = val - vals_[key];
            Trie* p = &root;
            for (const char c : key) {
                if (!p->children[c])
                    p->children[c] = new Trie();
                p->children[c]->sum += inc;
                p = p->children[c];
            }
            vals_[key] = val;
        }
        
        int sum(string prefix) {
            Trie* p = &root;
            for (const char c : prefix) {
                if (!p->children[c])
                    return 0;
                p = p->children[c];
            }
            return p->sum;
        }
    private:
        struct Trie {
            Trie():children(128, nullptr), sum(0){}
            ~Trie(){
                for (auto child : children)
                    if (child) delete child;
                children.clear();
            }
            vector<Trie*> children;
            int sum;
        };
        
        Trie root;
        unordered_map<string, int> vals_;
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41

    图遍历

    743. Network Delay Time这个题很详细。

    Dijkstra算法

    时间复杂度是O(N ^ 2 + E),空间复杂度是O(N+E).

    class Solution:
        def networkDelayTime(self, times, N, K):
            """
            :type times: List[List[int]]
            :type N: int
            :type K: int
            :rtype: int
            """
            K -= 1
            nodes = collections.defaultdict(list)
            for u, v, w in times:
                nodes[u - 1].append((v - 1, w))
            dist = [float('inf')] * N
            dist[K] = 0
            done = set()
            for _ in range(N):
                smallest = min((d, i) for (i, d) in enumerate(dist) if i not in done)[1]
                for v, w in nodes[smallest]:
                    if v not in done and dist[smallest] + w < dist[v]:
                        dist[v] = dist[smallest] + w
                done.add(smallest)
            return -1 if float('inf') in dist else max(dist)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    Floyd-Warshall算法

    时间复杂度O(n^3), 空间复杂度O(n^2)。

    class Solution:
        def networkDelayTime(self, times, N, K):
            """
            :type times: List[List[int]]
            :type N: int
            :type K: int
            :rtype: int
            """
            d = [[float('inf')] * N for _ in range(N)]
            for time in times:
                u, v, w = time[0] - 1, time[1] - 1, time[2]
                d[u][v] = w
            for i in range(N):
                d[i][i] = 0
            for k in range(N):
                for i in range(N):
                    for j in range(N):
                        d[i][j] = min(d[i][j], d[i][k] + d[k][j])
            return -1 if float('inf') in d[K - 1] else max(d[K - 1])
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    Bellman-Ford算法

    时间复杂度O(ne), 空间复杂度O(n)

    class Solution:
        def networkDelayTime(self, times, N, K):
            """
            :type times: List[List[int]]
            :type N: int
            :type K: int
            :rtype: int
            """
            dist = [float('inf')] * N
            dist[K - 1] = 0
            for i in range(N):
                for time in times:
                    u = time[0] - 1
                    v = time[1] - 1
                    w = time[2]
                    dist[v] = min(dist[v], dist[u] + w)
            return -1 if float('inf') in dist else max(dist)
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    最小生成树

    1135. Connecting Cities With Minimum Cost

    Kruskal算法

    class Solution {
    public:
        static bool cmp(vector<int> & a,vector<int> & b){
            return a[2] < b[2];
        }
        
        int find(vector<int> & f,int x){
            while(x != f[x]){
                x = f[x];
            }
            return x;
        }
        
        bool uni(vector<int> & f,int x,int y){
            int x1 = find(f,x);
            int y1 = find(f,y);
            f[x1] = y1;
            
            return true;
        }
        
        int minimumCost(int N, vector<vector<int>>& conections) {
            int ans = 0;
            int count = 0;
            vector<int> father(N+1,0);
            
            sort(conections.begin(),conections.end(),cmp);
            for(int i = 0;i <= N; ++i){
                father[i] = i;
            }
            
            for(auto conect : conections){
                if(find(father,conect[0]) != find(father,conect[1])){
                    count++;
                    ans += conect[2];
                    uni(father,conect[0],conect[1]);
                    if(count == N-1){
                        return ans;
                    }
                }
            }
            
            return -1;
        }
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45

    Prim算法

    struct cmp {
        bool operator () (const vector<int> &a, const vector<int> &b) {
            return a[2] > b[2];
        }
    };
    
    class Solution {
    public:    
        int minimumCost(int N, vector<vector<int>>& conections) {
            int ans = 0;
            int selected = 0;
            vector<vector<pair<int,int>>> edgs(N+1,vector<pair<int,int>>());
            priority_queue<vector<int>,vector<vector<int>>,cmp> pq;
            vector<bool> visit(N+1,false);
            
            /*initial*/
            for(auto re : conections){
                edgs[re[0]].push_back(make_pair(re[1],re[2]));
                edgs[re[1]].push_back(make_pair(re[0],re[2]));
            }
            
            if(edgs[1].size() == 0){
                return -1;
            }
            
            /*kruskal*/
            selected = 1;
            visit[1] = true;
            for(int i = 0;i < edgs[1].size(); ++i){
                pq.push(vector<int>({1,edgs[1][i].first,edgs[1][i].second}));
            }
            
            while(!pq.empty()){
                vector<int> curr = pq.top();
                pq.pop();
                
                if(!visit[curr[1]]){
                    visit[curr[1]] = true;
                    ans += curr[2];
                    for(auto e : edgs[curr[1]]){
                        pq.push(vector<int>({curr[1],e.first,e.second}));
                    }
                    selected++;
                    if(selected == N){
                        return ans;
                    }
                }
            }
            
            return -1;
        }
    };
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52

    拓扑排序

    BFS方式:

    class Solution(object):
        def canFinish(self, N, prerequisites):
            """
            :type N,: int
            :type prerequisites: List[List[int]]
            :rtype: bool
            """
            graph = collections.defaultdict(list)
            indegrees = collections.defaultdict(int)
            for u, v in prerequisites:
                graph[v].append(u)
                indegrees[u] += 1
            for i in range(N):
                zeroDegree = False
                for j in range(N):
                    if indegrees[j] == 0:
                        zeroDegree = True
                        break
                if not zeroDegree: return False
                indegrees[j] = -1
                for node in graph[j]:
                    indegrees[node] -= 1
            return True
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    DFS方式:

    class Solution(object):
        def canFinish(self, N, prerequisites):
            """
            :type N,: int
            :type prerequisites: List[List[int]]
            :rtype: bool
            """
            graph = collections.defaultdict(list)
            for u, v in prerequisites:
                graph[u].append(v)
            # 0 = Unknown, 1 = visiting, 2 = visited
            visited = [0] * N
            for i in range(N):
                if not self.dfs(graph, visited, i):
                    return False
            return True
            
        # Can we add node i to visited successfully?
        def dfs(self, graph, visited, i):
            if visited[i] == 1: return False
            if visited[i] == 2: return True
            visited[i] = 1
            for j in graph[i]:
                if not self.dfs(graph, visited, j):
                    return False
            visited[i] = 2
            return True
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27

    如果需要保存拓扑排序的路径:

    BFS方式:

    class Solution(object):
        def findOrder(self, numCourses, prerequisites):
            """
            :type numCourses: int
            :type prerequisites: List[List[int]]
            :rtype: List[int]
            """
            graph = collections.defaultdict(list)
            indegrees = collections.defaultdict(int)
            for u, v in prerequisites:
                graph[v].append(u)
                indegrees[u] += 1
            path = []
            for i in range(numCourses):
                zeroDegree = False
                for j in range(numCourses):
                    if indegrees[j] == 0:
                        zeroDegree = True
                        break
                if not zeroDegree:
                    return []
                indegrees[j] -= 1
                path.append(j)
                for node in graph[j]:
                    indegrees[node] -= 1
            return path
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

    DFS方式:

    class Solution(object):
        def findOrder(self, numCourses, prerequisites):
            """
            :type numCourses: int
            :type prerequisites: List[List[int]]
            :rtype: List[int]
            """
            graph = collections.defaultdict(list)
            for u, v in prerequisites:
                graph[u].append(v)
            # 0 = Unknown, 1 = visiting, 2 = visited
            visited = [0] * numCourses
            path = []
            for i in range(numCourses):
                if not self.dfs(graph, visited, i, path):
                    return []
            return path
        
        def dfs(self, graph, visited, i, path):
            if visited[i] == 1: return False
            if visited[i] == 2: return True
            visited[i] = 1
            for j in graph[i]:
                if not self.dfs(graph, visited, j, path):
                    return False
            visited[i] = 2
            path.append(i)
            return True
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    207. Course Schedule

    210. Course Schedule II

    310. Minimum Height Trees

    双指针

    这是一个模板,里面的map如果是双指针范围内的字符串字频的话,增加和减少的方式如下。

    int findSubstring(string s){
            vector<int> map(128,0);
            int counter; // check whether the substring is valid
            int begin=0, end=0; //two pointers, one point to tail and one  head
            int d; //the length of substring
    
            for() { /* initialize the hash map here */ }
    
            while(end<s.size()){
    
                if(map[s[end++]]++ ?){  /* modify counter here */ }
    
                while(/* counter condition */){ 
                     
                     /* update d here if finding minimum*/
    
                    //increase begin to make it invalid/valid again
                    
                    if(map[s[begin++]]-- ?){ /*modify counter here*/ }
                }  
    
                /* update d here if finding maximum*/
            }
            return d;
      }
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    424. 替换后的最长重复字符

    这个题的map是t的字频,所以使用map更方式和上是相反的。

    class Solution(object):
        def characterReplacement(self, s, k):
            N = len(s)
            left, right = 0, 0 # [left, right] 都包含
            counter = collections.Counter()
            res = 0
            while right < N:
                counter[s[right]] += 1
                maxCnt = counter.most_common(1)[0][1]
                while right - left + 1 - maxCnt > k:
                    counter[s[left]] -= 1
                    left += 1
                res = max(res, right - left + 1)
                right += 1
            return res
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    动态规划

    状态搜索

    688. Knight Probability in Chessboard

    62. Unique Paths

    63. Unique Paths II

    913. Cat and Mouse

    576. Out of Boundary Paths

    class Solution(object):
        def findPaths(self, m, n, N, i, j):
            """
            :type m: int
            :type n: int
            :type N: int
            :type i: int
            :type j: int
            :rtype: int
            """
            dp = [[0] * n for _ in range(m)]
            for s in range(1, N + 1):
                curStatus = [[0] * n for _ in range(m)]
                for x in range(m):
                    for y in range(n):
                        v1 = 1 if x == 0 else dp[x - 1][y]
                        v2 = 1 if x == m - 1 else dp[x + 1][y]
                        v3 = 1 if y == 0 else dp[x][y - 1]
                        v4 = 1 if y == n - 1 else dp[x][y + 1]
                        curStatus[x][y] = (v1 + v2 + v3 + v4) % (10**9 + 7)
                dp = curStatus
            return dp[i][j]
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    贪心

    贪心算法(又称贪婪算法)是指,在对问题求解时,总是做出在当前看来最好的选择。也就是说,不从整体最优上加以考虑,他所作出的是在某种意义上的局部最优解。贪心算法和动态规划算法都是由局部最优导出全局最优,这里不得不比较下二者的区别

    贪心算法:
    1.贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。
    2.由(1)中的介绍,可以知道贪心法正确的条件是:每一步的最优解一定包含上一步的最优解

    动态规划算法:
    1.全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解
    2.动态规划的关键是状态转移方程,即如何由以求出的局部最优解来推导全局最优解
    3.边界条件:即最简单的,可以直接得出的局部最优解

    贪心是个思想,没有统一的模板。

     
  • 相关阅读:
    Django之模板
    Django之视图
    Django之web框架和url路由
    SpringBoot整合Druid数据源
    SpringBoot整合定时任务异步任务
    逐行解读HashMap源码
    SpringBoot通过RedisTemplate执行Lua脚本
    SpringBoot使用H2内嵌数据库
    SpringBoot如何使用拦截器
    SpringBoot热部署的实现方式
  • 原文地址:https://www.cnblogs.com/taosiyu/p/14427001.html
Copyright © 2020-2023  润新知