• 文件(csv、excel、xml、html)的读取(read)和写入(write)方法——python


    读取:

    一、CSV格式:
    csv是Comma-Separated Values的缩写,是用文本文件形式储存的表格数据。
     
    1.csv模块&reader方法读取:
    import csv
    with open('enrollments.csv', 'rb') as f: reader = csv.reader(f)
    print reader
    out:<_csv.reader object at 0x00000000063DAF48>
    reader函数,接收一个可迭代的对象(比如csv文件),能返回一个生成器,就可以从其中解析出csv的内容:
    比如下面的代码可以读取csv的全部内容,以行为单位:import csv
    import csv
    with open('enrollments.csv', 'rb') as f:
        reader = csv.reader(f)
        enrollments = list(reader)
    复制代码
    import csv
    with open('enrollments.csv', 'rb') as f:
        reader = csv.reader(f)
    enrollments=[row for row in reader]
    print enrollments
    #返回的类型都是:list
    复制代码
    out:
    [['account_key', 'status', 'join_date', 'cancel_date', 'days_to_cancel', 'is_udacity', 'is_canceled'],

    ['448', 'canceled', '2014-11-10', '2015-01-14', '65', 'True', 'True'],

    ['448', 'canceled', '2014-11-05', '2014-11-10', '5', 'True', 'True'],
    ['448', 'canceled', '2015-01-27', '2015-01-27', '0', 'True', 'True'],
    [……]]


    如果要提取其中的某一行,可以用下面的代码:
    复制代码
    import csv
    with open('enrollments.csv','rb')as csvenroll:
        reader=csv.reader(csvenroll)
        for col,rows in enumerate(reader):
            if col==2:                                    #提取第二行
                row=rows
    print(row)
    #返回list类型
    复制代码

    out:['448', 'canceled', '2014-11-05', '2014-11-10', '5', 'True', 'True']

    如果要提取其中的某一列,可以用以下代码:

    复制代码
    import csv
    with open('enrollments.csv','rb')as csvenroll:
        reader=csv.reader(csvenroll)
        column=[row[2] for row in reader]                  #读取第三列
    print(column)
    #返回list类型
    复制代码

    out:['join_date', '2014-11-10', '2014-11-05', '2015-01-27', '2014-11-10', '2015-03-10', '2015-01-14', '2015-01-27',……]

    这种方法是通用的方法,要事先知道行/列号。这时可以采用第二种方法:DictReader,和reader函数类似,接收一个可迭代的对象,能返回一个生成器,但是返回的每一个单元格都放在一个字典的值内,而这个字典的键则是这个单元格的标题(即列头)。

    用下面的代码可以看到DictReader的结构:

    
    
    2.csv模块&DictReader方法读取:
    import csv
    with open(
    'enrollments.csv', 'rb') as f: reader = csv.DictReader(f)
    print reader
    out:<unicodecsv.py2.DictReader instance at 0x0000000009AA07C8>
    打印所有行:
    import csv
    with open('enrollments.csv', 'rb') as f:
        reader = csv.DictReader(f)
        enrollments = list(reader)
    import csv
    with open('enrollments.csv', 'rb') as f:
        reader = csv.DictReader(f)
        enrollments=[row for row in reader]
    #返回整个list,list里面是dict
    out:[{u'account_key': u'448',
      u'cancel_date': u'2015-01-14',
      u'days_to_cancel': u'65',
      u'is_canceled': u'True',
      u'is_udacity': u'True',
      u'join_date': u'2014-11-10',
      u'status': u'canceled'},
    {'account_key': '448',
      'cancel_date': '2014-11-10',
      'days_to_cancel': '5',
      'is_canceled': 'True',
      'is_udacity': 'True',
      'join_date': '2014-11-05',
      'status': 'canceled'}……] 
    复制代码
    import csv
    with open('enrollments.csv', 'rb') as f:
        reader = csv.DictReader(f)
        for line in reader:
            print line
    #返回dict
    复制代码
    out:
    {'status': 'canceled', 'is_udacity': 'True', 'is_canceled': 'True', 'join_date': '2014-11-10', 'account_key': '448', 'cancel_date': '2015-01-14', 'days_to_cancel': '65'}
    {'status': 'canceled', 'is_udacity': 'True', 'is_canceled': 'True', 'join_date': '2014-11-05', 'account_key': '448', 'cancel_date': '2014-11-10', 'days_to_cancel': '5'}
    ……
    如果要提取其中的某一行
    同reader方法,根据行号提取,但是提取的结果与reader方法不同,dictreader方法读取结果是一个键对应一个value
    复制代码
    import csv
    with open('enrollments.csv','rb')as csvenroll:
        reader=csv.DictReader(csvenroll)
        for col,rows in enumerate(reader):
            if col==0:                                  #提取第一行
                row=rows
    print(row)
    #返回dict类型
    复制代码
    out:{'account_key': '448',
     'cancel_date': '2015-01-14',
     'days_to_cancel': '65',
     'is_canceled': 'True',
     'is_udacity': 'True',
     'join_date': '2014-11-10',
     'status': 'canceled'}
    如果我们想用DictReader读取csv的满足特定值条件的某些行,就可以用列的标题查询:
    eg:查找所有cancel_date是2015-01-14的行
    复制代码
    import csv
    import pprint
    with open('enrollments.csv','rb')as f:
        reader=csv.DictReader(f)
        for line in reader:
            if line['cancel_date']=='2015-01-14':
                pprint.pprint(line)   
    #返回的line是dict类型
    复制代码
    {'account_key': '448',
     'cancel_date': '2015-01-14',
     'days_to_cancel': '65',
     'is_canceled': 'True',
     'is_udacity': 'True',
     'join_date': '2014-11-10',
     'status': 'canceled'}
    {'account_key': '60',
     'cancel_date': '2015-01-14',
     'days_to_cancel': '65',
     'is_canceled': 'True',
     'is_udacity': 'False',
     'join_date': '2014-11-10',
     'status': 'canceled'}{……}
    读取某一列
    复制代码
    import csv
    with open('enrollments.csv','rb')as f:
        reader=csv.DictReader(f)
        columns=[row['account_key'] for row in reader]      #直接根据想要提取的列名称读取,不能根据列号读取
    print(columns)
    #返回list类型
    复制代码
    out:['448', '448', '448', '448', '448', '448', '448', '448', '448', '700', '429', '429', '60', '60'……]
    3.pandas模块读取
    import pandas as pd
    data_df=pd.read_csv('enrollments.csv')
    print data_df
    #返回dataframe类型
    out:      account_key    status   join_date cancel_date  days_to_cancel  
    0             448  canceled  2014-11-10  2015-01-14            65.0   
    1             448  canceled  2014-11-05  2014-11-10             5.0   
    2             448  canceled  2015-01-27  2015-01-27             0.0   
    3             448  canceled  2014-11-10  2014-11-10             0.0   
    4             448   current  2015-03-10         NaN             NaN   
    5             448  canceled  2015-01-14  2015-01-27            13.0   
    6             448  canceled  2015-01-27  2015-03-10            42.0   
    7             448  canceled  2015-01-27  2015-01-27             0.0   
    8             448  canceled  2015-01-27  2015-01-27             0.0   
    9             700  canceled  2014-11-10  2014-11-16             6.0   
          is_udacity  is_canceled  
    0           True         True  
    1           True         True  
    2           True         True  
    3           True         True  
    4           True        False  
    5           True         True  
    6           True         True  
    7           True         True  
    8           True         True  
    9          False         True 
    读取某行:使用loc()方法
    data_df.loc[1]     #只要知道index即可,不一定非要知道行号
    account_key              448
    status              canceled
    join_date         2014-11-05
    cancel_date       2014-11-10
    days_to_cancel             5
    is_udacity              True
    is_canceled             True
    读取某些行:
    data_df.loc[:2]  
    读取某一列:
    data_df['status']   #返回series类型
    out:      
    0 canceled 1 canceled 2 canceled 3 canceled 4 current 5 canceled 6 canceled 7 canceled 8 canceled 9 canceled
    读取某行某列的值:iloc()
    data_df.iloc[0,2]
    out:'2014-11-10'


    二、excel格式
    1.
    xlrd模块读取
    import xlrd
    workbook=xlrd.open_workbook('enrollments.xls')
    out:<xlrd.book.Book at 0xa8cbf98>
    打印所有数据:
    复制代码
    import xlrd
    import pprint
    #打开工作簿
    workbook=xlrd.open_workbook('enrollments.xls')
    #选择工作表2(也就是工作簿中的第二个sheet)
    sheet=workbook.sheet_by_index(1)
    #遍历所有的列和行,并将所有的数据读取成python列表
    data=[[sheet.cell_value(row,col)
          for col in range(sheet.ncols)]
              for row in range(sheet.nrows)]
    pprint.pprint(data)
    #返回list类型
    复制代码
    [[u'account_key',u'status',u'join_date',u'cancel_date',u'days_to_cancel',u'is_udacity',u'is_canceled'],
     [448.0, u'canceled', 41953.0, 42018.0, 65.0, 1, 1],
     [448.0, u'canceled', 41948.0, 41953.0, 5.0, 1, 1],
     [448.0, u'canceled', 42031.0, 42031.0, 0.0, 1, 1],
     [448.0, u'canceled', 41953.0, 41953.0, 0.0, 1, 1],
     [448.0, u'current', 42073.0, u'', u'', 1, 0],
     [448.0, u'canceled', 42018.0, 42031.0, 13.0, 1, 1],
     [448.0, u'canceled', 42031.0, 42073.0, 42.0, 1, 1],
     [448.0, u'canceled', 42031.0, 42031.0, 0.0, 1, 1],
     [448.0, u'canceled', 42031.0, 42031.0, 0.0, 1, 1],
     [700.0, u'canceled', 41953.0, 41959.0, 6.0, 0, 1],
     [429.0, u'canceled', 41953.0, 42073.0, 120.0, 0, 1]]

     行/列的数量:

     print sheet.nrows
    print sheet.ncols

    out:12

      7

    读取某行某列数据:

    #打出刚刚生成列表中的第3行和第2列的值
    data[3][2]
    #或者
    sheet.cell_value(3,2)

    读取某行的数据:

    sheet.row_values(1,start_colx=0,end_colx=7)  #读取第一行数据(不考虑表头),这里的start/end_colx可以更改,从而来获取某行从某列到某列的值

    out:[448.0, u'canceled', 41953.0, 42018.0, 65.0, 1, 1]

    读取某列数据: 

    print sheet.col_values(2,start_rowx=0,end_rowx=7)   #读取第3列数据,1-6行
    out:[u'join_date', 41953.0, 41948.0, 42031.0, 41953.0, 42073.0, 42018.0] 
    2.pandas模块读取
    import pandas as pd
    workbook=pd.read_excel('enrollments.xls')   #默认读取工作簿的sheet1
    workbook

    如果要读取第二个sheet:

    import pandas as pd
    workbook=pd.read_excel('enrollments.xls',sheetname='Sheet2')
    workbook

    读取行、列等方法同前。

     

    三、xml格式

    使用xml.etree.ElementTree模块

    复制代码
    import xml.etree.ElementTree as ET  
    import pprint
    tree=ET.parse('exampleResearchArticle.xml')
    root=tree.getroot()
    print 'children of root'   #子元素
    for child in root:
        print child.tag  #使用标签属性来打印每个子元素的标签名
    复制代码
    out:
    children of root ui ji fm bdy bm
    获取根元素里面的内容:
    print "Authors' email addresses are as below:"
    for a in root.findall('./fm/bibl/aug/au'):    #findall 会返回匹配该xpath表达式的所有元素
        email=a.find('email')                      #对于每个元素,我们要进行“查找”以便定位
        if email is not None:
            print email.text

    out:

    Authors' email addresses are as below:
    omer@extremegate.com
    mcarmont@hotmail.com
    laver17@gmail.com
    nyska@internet-zahav.net
    kammarh@gmail.com
    gideon.mann.md@gmail.com
    barns.nz@gmail.com
    eukots@gmail.com

    四、html格式
    使用beautifulsoup模块
    复制代码
    from bs4 import BeautifulSoup
    soup=BeautifulSoup(open('virgin_and_logan_airport.html'))
    data=[]
    carrierlist=soup.find(id='CarrierList')
    for i in carrierlist.find_all('option'):   #这里与xml的findall不同,需要用find_all
        data.append(i['value'])
    print 'carrierlist:{}'.format(data)
    复制代码

    out:

    carrierlist:['All', 'AllUS', 'AllForeign', 'AS', 'G4', 'AA', '5Y', 'DL', 'MQ', 'EV', 'F9', 'HA', 'B6', 'OO', 'WN', 'NK', 'UA', 'VX']


    写入:

    1.pandas模块——csv
    复制代码
    import csv
    import pandas as pd
    titanic_df=pd.read_csv('titanic_data.csv')
    titanic_new=titanic_df.dropna(subset=['Age'])
    titanic_new.to_csv('titanic_new.csv')               #保存到当前目录
    titanic_new.to_csv('C:/asavefile/titanic_new.csv')  #保存到其他目录
    复制代码

    2.pandas模块——excel

    to_excel

    3.用csv模块,一行一行写入

    1)从list写入

    前文发现通过reader方法读取文件,返回的是list类型

    复制代码
    import csv
    # 文件头,一般就是数据名
    fileHeader = ["name", "score"]
    # 假设我们要写入的是以下两行数据
    d1 = ["Wang", "100"]
    d2 = ["Li", "80"]
    # 写入数据
    csvFile = open("C:/asavefile/instance.csv", "w")
    writer = csv.writer(csvFile)
    # 写入的内容都是以列表的形式传入函数
    # 一行一行的写入
    writer.writerow(fileHeader)
    writer.writerow(d1)
    writer.writerow(d1)
    csvFile.close()
    复制代码
    复制代码
    import csv
    with open('test_writer1.csv','wb') as f:
        writer=csv.writer(f)
        #先写入表头
        writer.writerow(['index','name','age','city'])
        #然后写入每行的内容
        writer.writerows([(0,'sandra',12,'shanghai'),   #用()或者[]好像没什么影响,所以数组和list均可?
                          [1,'cheam',13,'beijing'],
                          [2,'tom',14,'tianjin'],
                          [3,'tina',15,'chongqing']])
    复制代码

     out:

    复制代码
    import csv
    csvfile = open('C:/asavefile/test_writer2.csv', 'wb')  #打开方式还可以使用file对象
    writer = csv.writer(csvfile)
    data = [['name', 'age', 'telephone'],
        ('Tom', '25', '1234567'),
        ('Sandra', '18', '789456')]
    #表头和内容一起写入
    writer.writerows(data)
    csvfile.close()
    复制代码

    明白了道理,用哪个都一样,用最后一种最简单

     2)从dict写入

     自己创建一张表:writer方法

    复制代码
    dic = {'sandra':123, 'he':456, 'she':789}
    csvFile3 = open('C:/asavefile/csvFile3.csv','wb') 
    writer = csv.writer(csvFile3)
    writer.writerow(['name','value'])
    for key in dic:
        writer.writerow([key, dic[key]])
    csvFile3.close()
    复制代码

    out:

    完全复制一张表的内容:DictWriter方法

    复制代码
     1 import csv
    2 with open('C:/asavefile/enrollments.csv','rb') as f: #先打开需要复制的表格 3 reader=csv.DictReader(f) 4 line=[row for row in reader] 5 head=reader.fieldnames #reader方法没有fieldnames方法 6 csvFile = open("C:/asavefile/enrollments_copy.csv", "wb") 7 # 文件头以列表的形式传入函数,列表的每个元素表示每一列的标识 8 fileheader = head 9 dict_writer = csv.DictWriter(csvFile,fileheader) 10 # 但是如果此时直接写入内容,会导致没有数据名,所以,应先写数据名(也就是我们上面定义的文件头)。 11 # 写数据名,可以自己写如下代码完成: 12 dict_writer.writerow(dict(zip(fileheader,fileheader))) 13 # 之后,按照(属性:数据)的形式,将字典写入CSV文档即可 14 dict_writer.writerows(line) 15 csvFile.close()
    复制代码

     将满足条件的值,写入到一张新表:

    复制代码
    #将accountkey=448的挑选出来并保存到一个新的csv
    import csv
    with open('C:/asavefile/enrollments_accout.csv','wb') as outfile:
        with open('enrollments.csv', 'rb') as f:
            reader = csv.DictReader(f)
            #获取表头
            head=reader.fieldnames
            writer=csv.DictWriter(outfile,head)
            #写入表头的名字
            writer.writerow(dict(zip(head,head)))
         #开始一行一行写入数据
    for line in reader: if line['account_key']=='448': writer.writerow(line)
    复制代码



    
    

  • 相关阅读:
    pyqt登录界面设计
    pyqt 学习
    P2350-[HAOI2012]外星人【线性筛】
    P6775-[NOI2020]制作菜品【贪心,dp】
    Tensorflow2.0笔记31——卷积神经网络
    Tensorflow2.0笔记30——卷积神经网络
    Tensorflow2.0笔记29——全连接内容回顾
    Tensorflow2.0笔记28——应用程序,给图识物
    Tensorflow2.0笔记27——acc/loss 可视化,查看效果
    Tensorflow2.0笔记26——参数提取,写至文本
  • 原文地址:https://www.cnblogs.com/taosiyu/p/14116087.html
Copyright © 2020-2023  润新知