• 生成器和协程干货


    理解生成器

    定义生成器 

    yield关键字,可以让我们定义一个生成器函数。

    def generator_func():
        print('a')
        yield 1
    
    g = generator_func()
    print(g)

    >>> <generator object generator_func at 0x10e178b88>

    推动生成器

    使用next函数从生成器中取值

    def generator_func():
        print('a')
        yield 1
    
    
    g = generator_func()
    ret1 = next(g)
    print(ret1)

    >>>
    a
    1

    使用next可以推动生成器的执行,下面的代码,我们可以看到每一次执行next可以让generator_func中的代码从上一个位置开始继续执行到yield,并且将yield后面的值返回到函数外部,最终我们可以执行到yield 3。

    def generator_func():
        print('a')
        yield 1
        print('b')
        yield 2
        print('c')
        yield 3
        print('d')
    
    g = generator_func()
    ret1 = next(g)
    print(ret1)
    ret2 = next(g)
    print(ret2)
    ret3 = next(g)
    print(ret3)

    >>>

      a
      1
      b
      2
      c
      3

    当函数中已经没有更多的yield时继续执行next(g),遇到StopIteration

    def generator_func():
        print('a')
        yield 1
        print('b')
        yield 2
        print('c')
        yield 3
        print('d')
    
    g = generator_func()
    ret1 = next(g)
    print(ret1)
    ret2 = next(g)
    print(ret2)
    ret3 = next(g)
    print(ret3)
    next(g)
    next和StopIteration

    send向生成器中发送数据。send的作用相当于next,只是在驱动生成器继续执行的同时还可以向生成器中传递数据。

    import numbers
    def cal_sum():
        sum_num = 0
        while True:
            num = yield
            if isinstance(num,numbers.Integral):
                sum_num += num
                print('sum :',sum_num)
            elif num is None:
                break
    
    g = cal_sum()
    g.send(None)   # 相当于next(g),预激活生成器
    g.send(31)
    g.send(25)
    g.send(17)
    g.send(8)
    
    >>>
    sum : 31
    sum : 56
    sum : 73
    sum : 81

      

    生成器中的return和StopIteration

    import numbers
    def cal_sum():
        sum_num = 0
        while True:
            num = yield
            if isinstance(num,numbers.Integral):
                sum_num += num
                print('sum :',sum_num)
            elif num is None:
                break
        return sum_num
    
    g = cal_sum()
    g.send(None)   # 相当于next(g),预激活生成器
    g.send(31)
    g.send(25)
    g.send(17)
    g.send(8)
    g.send(None)   # 停止生成器
    
    >>>
    sum : 31
    sum : 56
    sum : 73
    sum : 81
    Traceback (most recent call last):
      File "/Users/jingliyang/PycharmProjects/python的进阶/manager.py", line 19, in <module>
        g.send(None)
    StopIteration: 81
    import numbers
    def cal_sum():
        sum_num = 0
        while True:
            num = yield
            if isinstance(num,numbers.Integral):
                sum_num += num
                print('sum :',sum_num)
            elif num is None:
                break
        return sum_num
    
    g = cal_sum()
    g.send(None)   # 相当于next(g),预激活生成器
    g.send(31)
    g.send(25)
    g.send(17)
    g.send(8)
    try:
        g.send(None)   # 停止生成器
    except StopIteration as e:
        print(e.value)
    异常处理以及获取return的值

    生成器的close和throw

    使用throw向生成器中抛一个异常

    def throw_test():
        print('a')
        yield 1
        print('b')
        yield 2
    
    g = throw_test()
    next(g)
    g.throw(Exception,'value error')

    >>>
    a
    Traceback (most recent call last):
    File "/Users/jingliyang/PycharmProjects/python的进阶/manager.py", line 32, in <module>
    g.throw(ValueError,'value error') # throw和send、next相同,都是驱动生成器继续执行,只不过throw用来向生成器中抛一个异常
    File "/Users/jingliyang/PycharmProjects/python的进阶/manager.py", line 26, in throw_test
    yield 1
    ValueError: value error
    def throw_test():
        print('a')
        try:
            yield 1
        except ValueError:
            pass
        print('b')
        yield 2
    
    g = throw_test()
    next(g)
    ret = g.throw(ValueError,'value error')  # throw和send、next相同,都是驱动生成器继续执行,只不过throw用来向生成器中抛一个异常
    print(ret)
    
    >>>
    a
    b
    2
    throw+异常处理

    使用close关闭一个生成器

    def throw_test():
        print('a')
        yield 1
        print('b')
        yield 2
    
    g = throw_test()
    ret1 = next(g)
    print(ret1)
    g.close()
    next(g)
    
    >>>
    a
    1
    Traceback (most recent call last):
      File "/Users/jingliyang/PycharmProjects/python的进阶/manager.py", line 45, in <module>
        next(g)
    StopIteration

    yield from关键字

    yield from关键字可以直接返回一个生成器

    l = ['h','e','l']
    dic = {'l':'v1','o':'v2'}
    s = 'eva'
    def yield_from_gen():
        for i in l:
            yield i
        for j in dic:
            yield j
        for k in s:
            yield k
    for item in yield_from_gen():
        print(item,end='')
    
    >>>helloeva
    
    l = ['h','e','l']
    dic = {'l':'v1','o':'v2'}
    s = 'eva'
    def yield_from_gen():
        yield from l
        yield from dic
        yield from s
    for item in yield_from_gen():
        print(item,end='')
    
    >>>helloeva
    from itertools import chain
    l = ['h','e','l']
    dic = {'l':'v1','o':'v2'}
    s = 'eva'
    def yield_from_gen():
        yield from chain(l,dic,s)
    
    for item in yield_from_gen():
        print(item,end='')
    chain和yield from

    利用yield from完成股票的计算,yield from能够完成一个委派生成器的作用,在子生成器和调用者之间建立起一个双向通道。

    def son_gen():
        avg_num = 0
        sum_num = 0
        count = 1
        while True:
            num = yield avg_num
            if num:
                sum_num += num
                avg_num = sum_num/count
                count += 1
            else:break
        return avg_num
    
    def depute_gen(key):
        while True:
            ret = yield from son_gen()
            print(key,ret)
    
    def main():
        shares_list= {
            'sogou':[6.4,6.5,6.6,6.2,6.1,6.6,6.7],
            'alibaba':[181.72,184.58,183.54,180,88,169.88,178.21,189.32],
            '美团':[59.7,52.6,47.2,55.4,60.7,66.1,74.0]
        }
        for key in shares_list:
            g = depute_gen(key)
            next(g)
            for v in shares_list[key]:
                g.send(v)
            g.send(None)
    
    main()

    协程

    概念

      根据维基百科给出的定义,“协程 是为非抢占式多任务产生子程序的计算机程序组件,协程允许不同入口点在不同位置暂停或开始执行程序”。从技术的角度来说,“协程就是你可以暂停执行的函数”。如果你把它理解成“就像生成器一样”,那么你就想对了。

    使用yield实现协程

    #基于yield实现异步
    import time
    def consumer():
        '''任务1:接收数据,处理数据'''
        while True:
            x=yield
    
    def producer():
        '''任务2:生产数据'''
        g=consumer()
        next(g)
        for i in range(10000000):
            g.send(i)
    
    producer()

    使用yield from实现的协程

    import datetime
    import heapq    # 堆模块
    import types
    import time
    
    
    class Task:
        def __init__(self, wait_until, coro):
            self.coro = coro
            self.waiting_until = wait_until
    
        def __eq__(self, other):
            return self.waiting_until == other.waiting_until
    
        def __lt__(self, other):
            return self.waiting_until < other.waiting_until
    
    
    class SleepingLoop:
    
        def __init__(self, *coros):
            self._new = coros
            self._waiting = []
    
        def run_until_complete(self):
            for coro in self._new:
                wait_for = coro.send(None)
                heapq.heappush(self._waiting, Task(wait_for, coro))
            while self._waiting:
                now = datetime.datetime.now()
                task = heapq.heappop(self._waiting)
                if now < task.waiting_until:
                    delta = task.waiting_until - now
                    time.sleep(delta.total_seconds())
                    now = datetime.datetime.now()
                try:
                    print('*'*50)
                    wait_until = task.coro.send(now)
                    print('-'*50)
                    heapq.heappush(self._waiting, Task(wait_until, task.coro))
                except StopIteration:
                    pass

    def sleep(seconds): now = datetime.datetime.now() wait_until = now + datetime.timedelta(seconds=seconds) print('before yield wait_until') actual = yield wait_until # 返回一个datetime数据类型的时间 print('after yield wait_until') return actual - now def countdown(label, length, *, delay=0): print(label, 'waiting', delay, 'seconds before starting countdown') delta = yield from sleep(delay) print(label, 'starting after waiting', delta) while length: print(label, 'T-minus', length) waited = yield from sleep(1) length -= 1 print(label, 'lift-off!') def main(): loop = SleepingLoop(countdown('A', 5), countdown('B', 3, delay=2), countdown('C', 4, delay=1)) start = datetime.datetime.now() loop.run_until_complete() print('Total elapsed time is', datetime.datetime.now() - start) if __name__ == '__main__': main()

    await和async关键字

    使用 async function 可以定义一个 异步函数,在async关键字定义的函数中不能出现yield和yield from

    # 例1
    async def download(url):   # 加入新的关键字 async ,可以将任何一个普通函数变成协程
        return 'eva'
    
    ret = download('http://www.baidu.com/')
    print(ret)  # <coroutine object download at 0x108b3a5c8>
    ret.send(None)  # StopIteration: eva
    
    # 例2
    async def download(url):
        return 'eva'
    def run(coroutine):
        try:
            coroutine.send(None)
        except StopIteration as e:
            return e.value
    
    coro = download('http://www.baidu.com/')
    ret = run(coro)
    print(ret)

    async关键字不能和yield一起使用,引入coroutine装饰器来装饰downloader生成器。

    await 操作符后面必须跟一个awaitable对象(通常用于等待一个会有io操作的任务, 它只能在异步函数 async function 内部使用

    # 例3
    import types
    
    @types.coroutine      # 将一个生成器变成一个awaitable的对象
    def downloader(url):
        yield 'aaa'
    
    
    async def download_url(url):   # 协程
        waitable = downloader(url)
        print(waitable)   # <generator object downloader at 0x1091e2c78>     生成器
        html = await waitable
        return html
    
    coro = download_url('http://www.baidu.com')
    print(coro)                # <coroutine object download_url at 0x1091c9d48>
    ret = coro.send(None)
    print(ret)

    asyncio模块

    asyncio是Python 3.4版本引入的标准库,直接内置了对异步IO的支持。

    asyncio的编程模型就是一个消息循环。我们从asyncio模块中直接获取一个EventLoop的引用,然后把需要执行的协程扔到EventLoop中执行,就实现了异步IO。

    coroutine+yield from
    import asyncio
    
    @asyncio.coroutine
    def hello():
        print("Hello world!")
        # 异步调用asyncio.sleep(1):
        r = yield from asyncio.sleep(1)
        print("Hello again!")
    
    # 获取EventLoop:
    loop = asyncio.get_event_loop()
    # 执行coroutine
    loop.run_until_complete(hello())
    loop.close()
    async+await
    import asyncio
    
    async def hello():
        print("Hello world!")
        # 异步调用asyncio.sleep(1):
        r = await asyncio.sleep(1)
        print("Hello again!")
    
    # 获取EventLoop:
    loop = asyncio.get_event_loop()
    # 执行coroutine
    loop.run_until_complete(hello())
    loop.close()

    执行多个任务

    import asyncio
    
    async def hello():
        print("Hello world!")
        await asyncio.sleep(1)
        print("Hello again!")
        return 'done'
    
    loop = asyncio.get_event_loop()
    loop.run_until_complete(asyncio.wait([hello(),hello()]))
    loop.close()

    获取返回值

    import asyncio
    
    async def hello():
        print("Hello world!")
        await asyncio.sleep(1)
        print("Hello again!")
        return 'done'
    
    loop = asyncio.get_event_loop()
    task = loop.create_task(hello())
    loop.run_until_complete(task)
    ret = task.result()
    print(ret)

    执行多个任务获取返回值

    import asyncio
    
    async def hello(i):
        print("Hello world!")
        await asyncio.sleep(i)
        print("Hello again!")
        return 'done',i
    
    loop = asyncio.get_event_loop()
    task1 = loop.create_task(hello(2))
    task2 = loop.create_task(hello(1))
    task_l = [task1,task2]
    tasks = asyncio.wait(task_l)
    loop.run_until_complete(tasks)
    for t in task_l:
        print(t.result())

    执行多个任务按照返回的顺序获取返回值

    import asyncio
    
    async def hello(i):
        print("Hello world!")
        await asyncio.sleep(i)
        print("Hello again!")
        return 'done',i
    
    async def main():
        tasks = []
        for i in range(20):
            tasks.append(asyncio.ensure_future(hello((20-i)/10)))
        for res in asyncio.as_completed(tasks):
            result = await res
            print(result)
    loop = asyncio.get_event_loop()
    loop.run_until_complete(main())

    asyncio使用协程完成http访问

    import asyncio
    
    async def get_url():
        reader,writer = await asyncio.open_connection('www.baidu.com',80)
        writer.write(b'GET / HTTP/1.1
    HOST:www.baidu.com
    Connection:close
    
    ')
        all_lines = []
        async for line in reader:
            data = line.decode()
            all_lines.append(data)
        html = '
    '.join(all_lines)
        return html
    
    async def main():
        tasks = []
        for url in range(20):
            tasks.append(asyncio.ensure_future(get_url()))
        for res in asyncio.as_completed(tasks):
            result = await res
            print(result)
    
    
    if __name__ == '__main__':
        loop = asyncio.get_event_loop()
        loop.run_until_complete(main())  # 处理一个任务
        loop.run_until_complete(asyncio.wait([main()]))  # 处理多个任务
    
        task = loop.create_task(main())  # 使用create_task获取返回值
        loop.run_until_complete(task)
        loop.run_until_complete(asyncio.wait([task]))

    gevent模块实现协程

    http://www.cnblogs.com/Eva-J/articles/8324673.html

     
     
     
  • 相关阅读:
    localStorage存储数组以及取数组方法
    jq选择CheckBox进行排序
    js定时函数,定时改变字体的大小
    JQuery Datatable用法
    WebSocket实战
    代码段
    黎活明给程序员的忠告 收藏
    雅砻江后勤项目经验总结
    Java泛型方法
    回忆,梦的开始
  • 原文地址:https://www.cnblogs.com/taosiyu/p/11624724.html
Copyright © 2020-2023  润新知