• Python3玩转儿 机器学习(3)


    机器学习算法可以分为:

    • 监督学习
    • 非监督学习
    • 半监督学习
    • 增强学习

    监督学习:给机器的训练数据拥有“标记”或者“答案”,例如:

    我们需要告诉机器左边的画面是一只狗,而右边的照片是一只猫。同理对于MNIST数据集,给机器图像信息后还应该附上标记信息,如图所示:

    运用监督学习的场景举例:

    • 图像已经拥有了标定信息
    • 银行已经积累了一定的客户信息和他们信用卡的实用信息
    • 医院已经积累了一定的病人信息和他们最终确诊是否患病的情况
    • 市场积累了房屋的基本信息和最终成交的金额
    • ......

    此课程中学习的大部分算法属于监督学习算法

    • K近邻
    • 线性回归和多项式回归
    • 逻辑回归
    • SVM
    • 决策树和随机森林

    非监督学习:给机器训练数据没有任何“标记”或者“答案”

    聚类分析:对没有“标记”的数据进行分类

    非监督学习一个非常重要的作用就是对数据进行降维处理。

    • 特征提取:信用卡的信用评级和人的胖瘦无关?无关的特征丢掉
    • 特征压缩:PCA

    降维处理的意义:方便可视化

    非监督学习还可以进行异常检测

    如图所示:图中两个红点明显与其他点脱离,如果它们同属与一种数据,我们可以将这两个点归类为异常,将其去除。当突然图中为二维点,在高维中我们会使用相应的算法剔除异常数据。

    半监督学习:一部分数据有“标记”或者“答案”,另一部分没有

    相对监督学习,更常见的是各种原因产生的标记缺失的半监督学习。

    通常都先使用无监督学习手段对数据做处理,之后使用监督学习手段作模型的训练和预测。

    增强学习:根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式。

    监督学习和半监督学习是基础。

  • 相关阅读:
    css解决display:inline-block;产生的缝隙(间隙)
    js二进制与十进制互转
    js获取HTTP的请求头信息
    安装WampServer时出现的问题(丢失VCRUNTIME140.dll或MSVCR110.dll)以及解决办法
    学习安装并配置前端自动化工具Gulp
    解决overflow:hidden在安卓微信页面没有效果的办法
    Python 调用 ES、Solr、Phoenix
    Python 调用 Hprose接口、Dubbo接口、Java方法
    Python调用Redis
    robot用例执行常用命令(转)
  • 原文地址:https://www.cnblogs.com/taoke2016/p/8905948.html
Copyright © 2020-2023  润新知