• 13-垃圾邮件分类2


    1.读取

    源代码:

    #读取文件
    file_path=r'D:PycharmProjects201706120186罗奕涛dataSMSSpamCollection'
    sms=open(file_path,'r',encoding='utf-8')
    sms_data=[]
    sms_label=[]
    csv_reader=csv.reader(sms,delimiter='	')
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(preprocessing(line[1]))#对每封邮件做预处理
    sms.close()
    
    print(sms_label)
    print(sms_data)

    2.数据预处理

    源代码:

    import csv
    import nltk
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    
    print(nltk.__doc__)#输出版本号
    
    def get_wordnet_pos(treebank_tag):#根据词性,生成还原参数pos
        if treebank_tag.startswith('J'):
            return nltk.corpus.wordnet.ADJ
        elif treebank_tag.startswith('V'):
            return nltk.corpus.wordnet.VERB
        elif treebank_tag.startswith('N'):
            return nltk.corpus.wordnet.NOUN
        elif treebank_tag.startswith('R'):
            return nltk.corpus.wordnet.ADV
        else:
            return nltk.corpus.wordnet.NOUN
    
    #预处理
    def preprocessing(text):
        tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]#分词
        stops = stopwords.words("english")#停用词
        tokens = [token for token in tokens if token not in stops]#去掉停用词
        tokens = [token.lower() for token in tokens if len(token) >= 3]#将大写字母变为小写
    
        tag=nltk.pos_tag(tokens)#词性
        lmtzr = WordNetLemmatizer()
        tokens = [lmtzr.lemmatize(token,pos=get_wordnet_pos(tag[i][1])) for i,token in enumerate(tokens)]
        preprocessed_text = ''.join(tokens)
        return preprocessed_text

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    源代码:

    # 按0.8:0.2比例分为训练集和测试集
    import numpy as np
    from sklearn.model_selection import train_test_split
    
    sms_data = np.array(sms_data)
    sms_label = np.array(sms_label)
    x_train, x_test, y_train, y_test = train_test_split(sms_data, sms_label, test_size=0.2, random_state=0,
                                                        stratify=sms_label)
    print(len(sms_data),len(x_train),len(x_test))
    print(x_train)

    结果:

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    源代码:

    # 将其向量化
    from sklearn.feature_extraction.text import TfidfVectorizer
    
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(x_train)
    X_test = vectorizer.transform(x_test)
    
    print(X_train.toarray().shape)
    print(X_test.toarray().shape)

    结果:

    4.模型选择

    from sklearn.naive_bayes import MultinomialNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    多项式朴素贝叶斯分类器适用于具有离散特征的分类(例如,用于文本分类的字数统计)

    源代码:

    from sklearn.naive_bayes import MultinomialNB
    
    clf = MultinomialNB().fit(X_train, y_train)
    y_nb_pred = clf.predict(X_test)
    # x_test预测结果
    print(y_nb_pred.shape,y_nb_pred)

    结果:

    5.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    混淆矩阵是一个2 × 2的情形分析表,显示以下四组记录的数目:作出正确判断的肯定记录(真阳性)、作出错误判断的肯定记录(假阴性)、作出正确判断的否定记录(真阴性)以及作出错误判断的否定记录(假阳性)

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义

     

    源代码:

    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import classification_report
    
    # 混淆矩阵
    cm = confusion_matrix(y_test, y_nb_pred)
    print('nb_confusion_matrix:')
    print(cm)
    # 主要分类指标的文本报告
    cr = classification_report(y_test, y_nb_pred)
    print('nb_classification_report:')
    print(cr)

    结果:

    6.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

    CountVectorizer只能转化英文的,不能转化中文的,因为是靠空格识别的。

  • 相关阅读:
    【OpenCV】SIFT原理与源码分析:方向赋值
    【OpenCV】SIFT原理与源码分析:关键点搜索与定位
    【OpenCV】SIFT原理与源码分析:DoG尺度空间构造
    【OpenCV】SIFT原理与源码分析
    在Android 下写一个检测软件版本号 以自动升级APP 的插件
    Android开发-eclipse+phonegap(Cordova)环境搭建
    phonegap(cordova)从手机app跳转到web页面在跳转回APP本地页面思路
    黑板客爬虫闯关第一关、第二关
    scrapy实战
    scrapy爬虫框架
  • 原文地址:https://www.cnblogs.com/tao614/p/12929544.html
Copyright © 2020-2023  润新知