• 银行分控模型


    1.神经网络

     1 '''神经网络测试'''
     2 import pandas as pd
     3 from keras.models import Sequential
     4 from keras.layers.core import Dense, Activation
     5 import numpy as np
     6 
     7 # 参数初始化
     8 inputfile = 'data/bankloan.xls'
     9 data = pd.read_excel(inputfile)
    10 x_test = data.iloc[:,:8].values
    11 y_test = data.iloc[:,8].values
    12 
    13 model = Sequential()  # 建立模型
    14 model.add(Dense(input_dim = 8, units = 8))
    15 model.add(Activation('relu'))  # 用relu函数作为激活函数,能够大幅提供准确度
    16 model.add(Dense(input_dim = 8, units = 1))
    17 model.add(Activation('sigmoid'))  # 由于是0-1输出,用sigmoid函数作为激活函数
    18 
    19 model.compile(loss = 'mean_squared_error', optimizer = 'adam')
    20 # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary
    21 # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。
    22 # 求解方法我们指定用adam,还有sgd、rmsprop等可选
    23 
    24 model.fit(x_test, y_test, epochs = 1000, batch_size = 10)
    25 
    26 predict_x=model.predict(x_test)
    27 classes_x=np.argmax(predict_x,axis=1)
    28 yp = classes_x.reshape(len(y_test))
    29 
    30 def cm_plot(y, yp):
    31 
    32   from sklearn.metrics import confusion_matrix
    33 
    34   cm = confusion_matrix(y, yp)
    35 
    36   import matplotlib.pyplot as plt
    37   plt.matshow(cm, cmap=plt.cm.Greens)
    38   plt.colorbar()
    39 
    40   for x in range(len(cm)):
    41     for y in range(len(cm)):
    42       plt.annotate(cm[x,y], xy=(x, y), horizontalalignment='center', verticalalignment='center')
    43 
    44   plt.ylabel('True label')
    45   plt.xlabel('Predicted label')
    46   return plt
    47 
    48 cm_plot(y_test,yp).show()# 显示混淆矩阵可视化结果
    49 
    50 score  = model.evaluate(x_test,y_test,batch_size=128)  # 模型评估
    51 print(score)

    测试结果:

     2.SVM

     1 from sklearn import svm
     2 from sklearn.metrics import accuracy_score
     3 from sklearn.metrics import confusion_matrix
     4 from matplotlib import pyplot as plt
     5 import pandas as pd
     6 import numpy as np
     7 import seaborn as sns
     8 from sklearn.model_selection import train_test_split
     9 data_load = "data/bankloan.xls"
    10 data = pd.read_excel(data_load)
    11 data.describe()
    12 data.columns
    13 data.index
    14 ## 转为np 数据切割
    15 X = np.array(data.iloc[:,0:-1])
    16 y = np.array(data.iloc[:,-1])
    17 X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1, train_size=0.8, test_size=0.2, shuffle=True)
    18 svm = svm.SVC()
    19 svm.fit(X_test,y_test)
    20 y_pred = svm.predict(X_test)
    21 accuracy_score(y_test, y_pred)
    22 print(accuracy_score(y_test, y_pred))
    23 cm = confusion_matrix(y_test, y_pred)
    24 heatmap = sns.heatmap(cm, annot=True, fmt='d')
    25 heatmap.yaxis.set_ticklabels(heatmap.yaxis.get_ticklabels(), rotation=0, ha='right')
    26 heatmap.xaxis.set_ticklabels(heatmap.xaxis.get_ticklabels(), rotation=45, ha='right')
    27 plt.ylabel("true label")
    28 plt.xlabel("predict label")
    29 plt.show()

    测试结果:

     3.决策树

     1 import pandas as pd
     2 # 参数初始化
     3 filename = 'data/bankloan.xls'
     4 data = pd.read_excel(filename)  # 导入数据
     5 
     6 # 数据是类别标签,要将它转换为数据
     8 
     9 x = data.iloc[:,:8].astype(int)
    10 y = data.iloc[:,8].astype(int)
    11 
    12 
    13 from sklearn.tree import DecisionTreeClassifier as DTC
    14 dtc = DTC(criterion='entropy')  # 建立决策树模型,基于信息熵
    15 dtc.fit(x, y)  # 训练模型
    16 
    17 # 导入相关函数,可视化决策树。
    18 # 导出的结果是一个dot文件,需要安装Graphviz才能将它转换为pdf或png等格式。
    19 from sklearn.tree import export_graphviz
    20 x = pd.DataFrame(x)
    21 
    22 """
    23 string1 = '''
    24 edge [fontname="NSimSun"];
    25 node [ fontname="NSimSun" size="15,15"];
    26 {
    27 '''
    28 string2 = '}'
    29 """
    30 
    31 with open("data/tree.dot", 'w') as f:
    32     export_graphviz(dtc, feature_names = x.columns, out_file = f)
    33     f.close()
    34 
    35 
    36 from IPython.display import Image
    37 from sklearn import tree
    38 import pydotplus
    39 
    40 dot_data = tree.export_graphviz(dtc, out_file=None,  #regr_1 是对应分类器
    41                          feature_names=data.columns[:8],   #对应特征的名字
    42                          class_names=data.columns[8],    #对应类别的名字
    43                          filled=True, rounded=True,
    44                          special_characters=True)
    45 
    46 graph = pydotplus.graph_from_dot_data(dot_data)
    47 graph.write_png('data/example.png')    #保存图像
    48 Image(graph.create_png())

    测试结果:

  • 相关阅读:
    Description Resource Path Location Type Java compiler level does not match the version of the instal
    myeclipse导入项目后,项目类中报Base64错
    Oracle中查询一个字符串的长度的函数
    异常QueryTimeoutException和for input String
    myeclipse中的内存溢出PermGen space
    SecureCRT--下重启服务器
    清除tomcat的缓存
    oracle 定时任务 job 调用存储过程有回到输出参数(含out参数)
    Spring之AOP
    @RequestParam、@PathVariable、@RequestBody区别
  • 原文地址:https://www.cnblogs.com/tantan0914/p/16075375.html
Copyright © 2020-2023  润新知