• hadoop mapreduce 基础实例一记词


    mapreduce实现一个简单的单词计数的功能。

    一,准备工作:eclipse 安装hadoop 插件:

    下载相关版本的hadoop-eclipse-plugin-2.2.0.jar到eclipse/plugins下。

    二,实现:

    新建mapreduce project

    map 用于分词,reduce计数。

    package tank.demo;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    /**
     * @author tank
     * @date:2015年1月5日 上午10:03:43
     * @description:记词器
     * @version :0.1
     */
    
    public class WordCount {
        public static class TokenizerMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
                StringTokenizer itr = new StringTokenizer(value.toString());
                while (itr.hasMoreTokens()) {
                    word.set(itr.nextToken());
                    context.write(word, one);
                }
            }
        }
    
        public static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
            private IntWritable result = new IntWritable();
    
            public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
                int sum = 0;
                for (IntWritable val : values) {
                    sum += val.get();
                }
                result.set(sum);
                context.write(key, result);
            }
        }
    
        public static void main(String[] args) throws Exception {
             
            Configuration conf = new Configuration();
            if (args.length != 2) {
                System.err.println("Usage: wordcount  ");
                System.exit(2);
            }
            Job job = new Job(conf, "word count");
            //主类
            job.setJarByClass(WordCount.class);
            
            job.setMapperClass(TokenizerMapper.class);
            job.setReducerClass(IntSumReducer.class);
            //map输出格式
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(IntWritable.class);
            //输出格式
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(IntWritable.class);
            
            FileInputFormat.addInputPath(job, new Path(args[0]));
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            
            System.exit(job.waitForCompletion(true) ? 0 : 1);
        }
    
    }

    打包world-count.jar

    三,准备输入数据

    hadoop fs -mkdir /user/hadoop/input//建好输入目录

    //随便写点数据文件

    echo hello my hadoop this is my first application>file1

    echo hello world my deer my applicaiton >file2

    //拷贝到hdfs中

    hadoop fs -put file* /user/hadoop/input

    hadoop fs -ls /user/hadoop/input //查看

    四,运行

    上传到集群环境中:

    hadoop jar world-count.jar  WordCount input output

    截取一段输出如:

    15/01/05 11:14:36 INFO mapred.Task: Task:attempt_local1938802295_0001_r_000000_0 is done. And is in the process of committing
    15/01/05 11:14:36 INFO mapred.LocalJobRunner:
    15/01/05 11:14:36 INFO mapred.Task: Task attempt_local1938802295_0001_r_000000_0 is allowed to commit now
    15/01/05 11:14:36 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1938802295_0001_r_000000_0' to hdfs://192.168.183.130:9000/user/hadoop/output/_temporary/0/task_local1938802295_0001_r_000000
    15/01/05 11:14:36 INFO mapred.LocalJobRunner: reduce > reduce
    15/01/05 11:14:36 INFO mapred.Task: Task 'attempt_local1938802295_0001_r_000000_0' done.
    15/01/05 11:14:36 INFO mapreduce.Job: Job job_local1938802295_0001 running in uber mode : false
    15/01/05 11:14:36 INFO mapreduce.Job:  map 100% reduce 100%
    15/01/05 11:14:36 INFO mapreduce.Job: Job job_local1938802295_0001 completed successfully
    15/01/05 11:14:36 INFO mapreduce.Job: Counters: 32
            File System Counters
                    FILE: Number of bytes read=17706
                    FILE: Number of bytes written=597506
                    FILE: Number of read operations=0
                    FILE: Number of large read operations=0
                    FILE: Number of write operations=0
                    HDFS: Number of bytes read=205
                    HDFS: Number of bytes written=85
                    HDFS: Number of read operations=25
                    HDFS: Number of large read operations=0
                    HDFS: Number of write operations=5
            Map-Reduce Framework
                    Map input records=2
                    Map output records=14
                    Map output bytes=136
                    Map output materialized bytes=176
                    Input split bytes=232
                    Combine input records=0
                    Combine output records=0
                    Reduce input groups=10
                    Reduce shuffle bytes=0
                    Reduce input records=14
                    Reduce output records=10
                    Spilled Records=28
                    Shuffled Maps =0
                    Failed Shuffles=0
                    Merged Map outputs=0
                    GC time elapsed (ms)=67
                    CPU time spent (ms)=0
                    Physical memory (bytes) snapshot=0
                    Virtual memory (bytes) snapshot=0
                    Total committed heap usage (bytes)=456536064
            File Input Format Counters
                    Bytes Read=80
            File Output Format Counters
                    Bytes Written=85

    查看输出目录下的文件

    [hadoop@tank1 ~]$ hadoop fs -cat /user/hadoop/output/part-r-00000
    applicaiton     1
    application     1
    deer    1
    first   1
    hadoop  1
    hello   2
    is      1
    my      4
    this    1
    world   1

    已经正确统计出单词数量!

  • 相关阅读:
    添加egit插件
    Git使用教程
    mysql set names 命令和 mysql字符编码问题
    git常用命令
    前端WEB编辑器-------webstrom
    maven 常见错误解决方法
    java -jar 执行 eclipse export 的 jar 包报错处理
    数据库(DBUtils)
    数据库(JDBC、DBUtils)
    rabbitmq Exchange四种模式
  • 原文地址:https://www.cnblogs.com/tankaixiong/p/4203437.html
Copyright © 2020-2023  润新知