• Celery


    Celery

    pip3 install celery

    Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。

    组成

    • 消息中间件(rabbitmq,redis)
    • 任务执行单元
    • 任务执行结果存储(redis)

    执行命令语法

    celery worker -A celery_app_task -l info
    celery worker -A celery_app_task -l info -P eventlet
    

    异步执行

    单目录

    定义任务 celery_task.py

    import celery
    import time
    
    broker = 'redis://127.0.0.1:6379/1'
    backend = 'redis://127.0.0.1:6379/2'
    
    cel = celery.Celery('test', backend=backend, broker=broker)
    
    
    @cel.task
    def send_email(name):
        print('发邮件')
        time.sleep(5)
        print('完成%s' % name)
        return 'ok'
    
    

    创建任务执行 produce_task.py

    from celery_task import send_email
    result = send_email.delay("yuan")
    print(result.id)
    result2 = send_email.delay("alex")
    print(result2.id)  
    

    获取结果 get_res.py

    from celery.result import AsyncResult
    from celery_task import cel
    
    async_result=AsyncResult(id="c6ddd5b7-a662-4f0e-93d4-ab69ec2aea5d", app=cel)
    
    if async_result.successful():
        result = async_result.get()
        print(result)
        # result.forget() # 将结果删除
    elif async_result.failed():
        print('执行失败')
    elif async_result.status == 'PENDING':
        print('任务等待中被执行')
    elif async_result.status == 'RETRY':
        print('任务异常后正在重试')
    elif async_result.status == 'STARTED':
        print('任务已经开始被执行')
    

    多目录

    celery worker -A celery_task -l info -P eventlet

    • celery.py: 写配置
    • task1 task2 : 写任务
    • get_res : 获取结果
    • produce_taks : 生产任务

    celery.py 配置

    from celery import Celery
    
    cel = Celery('celery_demo',
                 broker='redis://127.0.0.1:6379/1',
                 backend='redis://127.0.0.1:6379/2',
                 # 包含以下两个任务文件,去相应的py文件中找任务,对多个任务做分类
                 include=['celery_tasks.task1',
                          'celery_tasks.task2'
                          ])
    
    # 时区
    cel.conf.timezone = 'Asia/Shanghai'
    # 是否使用UTC
    cel.conf.enable_utc = False
    
    

    定义任务 task1 task2

    from celery_tasks.celery import cel
    import time
    
    
    @cel.task
    def send_msg(name):
        print('短信')
        time.sleep(5)
        print('完成%s' % name)
        return "短信"
    
    

    创建任务执行 product_task

    from celery_tasks.task1 import send_msg
    from celery_tasks.task2 import send_email
    
    # 立即告知celery去执行test_celery任务,并传入一个参数
    result = send_email.delay('yuan')
    print(result.id)
    result = send_msg.delay('yuan')
    print(result.id)
    

    获取结果 get_res.py

    from celery.result import AsyncResult
    from celery_tasks.celery import cel
    
    while True:
        async_result = AsyncResult(id=input(">>"), app=cel)
        if async_result.successful():
            result = async_result.get()
            print(result)
            # result.forget() # 将结果删除
        elif async_result.failed():
            print('执行失败')
        elif async_result.status == 'PENDING':
            print('任务等待中被执行')
        elif async_result.status == 'RETRY':
            print('任务异常后正在重试')
        elif async_result.status == 'STARTED':
            print('任务已经开始被执行')
    

    定时任务

    单目录

    celery_task.py

    from celery_tasks.celery import cel
    import time
    
    
    @cel.task
    def send_msg(name):
        print('短信')
        time.sleep(5)
        print('完成%s' % name)
        return "短信"
    
    

    produce_task.py(邮件运行)

    from celery_task import send_email
    from datetime import datetime
    
    # 方式一 某一固定时间
    # v1 = datetime(2020, 3, 11, 16, 19, 00)
    # print(v1)
    # v2 = datetime.utcfromtimestamp(v1.timestamp())
    # print(v2)
    # result = send_email.apply_async(args=["egon",], eta=v2)
    # print(result.id)
    
    # 方式二 固定时间以后
    ctime = datetime.now()
    # 默认用utc时间
    utc_ctime = datetime.utcfromtimestamp(ctime.timestamp())
    from datetime import timedelta
    time_delay = timedelta(seconds=10)
    task_time = utc_ctime + time_delay
    
    # 使用apply_async并设定时间
    result = send_email.apply_async(args=["egon"], eta=task_time)
    print(result.id)
    

    get_Res.py

    from celery.result import AsyncResult
    from celery_task import cel
    
    async_result=AsyncResult(id="c6ddd5b7-a662-4f0e-93d4-ab69ec2aea5d", app=cel)
    
    if async_result.successful():
        result = async_result.get()
        print(result)
        # result.forget() # 将结果删除
    elif async_result.failed():
        print('执行失败')
    elif async_result.status == 'PENDING':
        print('任务等待中被执行')
    elif async_result.status == 'RETRY':
        print('任务异常后正在重试')
    elif async_result.status == 'STARTED':
        print('任务已经开始被执行')
    

    多目录

    和 produce_task.py 没关系

    celery.py

    from datetime import timedelta
    from celery import Celery
    from celery.schedules import crontab
    
    cel = Celery('tasks', broker='redis://127.0.0.1:6379/1', backend='redis://127.0.0.1:6379/2', include=[
        'celery_tasks.task01',
        'celery_tasks.task02',
    ])
    cel.conf.timezone = 'Asia/Shanghai'
    cel.conf.enable_utc = False
    
    cel.conf.beat_schedule = {
        # 名字随意命名
        'add-every-10-seconds': {
            # 执行tasks1下的test_celery函数
            'task': 'celery_tasks.task01.send_email',
            # 每隔2秒执行一次
            # 'schedule': 1.0,
            # 'schedule': crontab(minute="*/1"),
            'schedule': timedelta(seconds=6),
            # 传递参数
            'args': ('张三',)
        },
        # 'add-every-12-seconds': {
        #     'task': 'celery_tasks.task01.send_email',
        #     每年4月11号,8点42分执行
        #     'schedule': crontab(minute=42, hour=8, day_of_month=11, month_of_year=4),
        #     'args': ('张三',)
        # },
    } 
    

    produce_task.py 命令

    此时和produce无关
    通过命令来启动
    celery beat -A celery_tasks
    进程会读取配置文件的内容,周期性的将配置中到期需要执行的任务发送给任务队列
    周期性的向队列插入任务

  • 相关阅读:
    Devexpress根据条件单元格变色以及根据条件设置单元格可编辑-记录
    批量更新事物加回滚
    批量更新
    Devexpress GridControl无限高度惹得祸
    C# 多语言国际化问题中的 CultureInfo
    配置linux服务器的防火墙,以CENTOS 为例(转载)
    关于Java的程序运行提醒
    用Eclipse跑Hadoop程序的注意事项
    Hadoop平台-错误收集附解决方案!
    unity3d之物体克隆
  • 原文地址:https://www.cnblogs.com/tangshuo/p/12744555.html
Copyright © 2020-2023  润新知