• Tensorflow通过CNN实现MINST数据分类


    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data/', one_hot=True)
    
    def compute_accuracy(v_xs,v_ys):
        global prediction
        y_pre=sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1})
        correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
        accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
        result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
        return result
    
    def weight_varirable(shape):
        inital=tf.truncated_normal(shape,stddev=0.1)
        return tf.Variable(inital)
    
    def bias_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def conv2d(x,W):
        return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
    
    def max_poo_(x):
         return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
    
    xs=tf.placeholder(tf.float32,[None,784])
    ys=tf.placeholder(tf.float32,[None,10])
    keep_prob=tf.placeholder(tf.float32)
    
    x_image=tf.reshape(xs,[-1,28,28,1])
    
    W_conv1=weight_varirable([5,5,1,32])
    b_conv1=bias_variable([32])
    h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
    h_pool1=max_poo_(h_conv1)
    
    W_conv2=weight_varirable([5,5,32,64])
    b_conv2=bias_variable([64])
    h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
    h_pool2=max_poo_(h_conv2)
    
    
    
    W_fc1=weight_varirable([7*7*64,1024])
    b_fc1=bias_variable([1024])
    
    h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64])
    h_fcl=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
    h_fc1_drop=tf.nn.dropout(h_fcl,keep_prob)
    
    W_fc2=weight_varirable([1024,10])
    b_fc2=bias_variable([10])
    
    prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
    
    cross_entropy=tf.reduce_mean(
        -tf.reduce_sum(ys*tf.log(prediction),
        reduction_indices=[1]))
    
    train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
    sess=tf.Session()
    
    sess.run(tf.global_variables_initializer())
    
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys,keep_prob:0.5})
        if i % 50 == 0:
            print(compute_accuracy(
                mnist.test.images, mnist.test.labels))

     如果有同学没有MINST数据,请到http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_download.html下载,或者QQ问我

  • 相关阅读:
    Eygle力荐:Oracle 19c升级文档、视频、问答集锦
    每日一题 2020.05.11
    “前浪”数据仓库和大数据平台,到“后浪”数据中台的演变史
    面向对象例子
    super()调用父类方法
    iOS视图控制器初始化问题
    详解EBS接口开发之更新供应商付款方法
    oracle对大对象类型操作:blob,clob,nclob
    "ORA-20100: 为 FND_FILE 创建文件 o0003167.tmp 失败"
    错误 frm-40654 记录已经被另一个用户更新,重新查询以查看修改
  • 原文地址:https://www.cnblogs.com/tangmiao/p/8250470.html
Copyright © 2020-2023  润新知