import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data/', one_hot=True) def compute_accuracy(v_xs,v_ys): global prediction y_pre=sess.run(prediction,feed_dict={xs:v_xs,keep_prob:1}) correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1)) accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys}) return result def weight_varirable(shape): inital=tf.truncated_normal(shape,stddev=0.1) return tf.Variable(inital) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') def max_poo_(x): return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') xs=tf.placeholder(tf.float32,[None,784]) ys=tf.placeholder(tf.float32,[None,10]) keep_prob=tf.placeholder(tf.float32) x_image=tf.reshape(xs,[-1,28,28,1]) W_conv1=weight_varirable([5,5,1,32]) b_conv1=bias_variable([32]) h_conv1=tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1=max_poo_(h_conv1) W_conv2=weight_varirable([5,5,32,64]) b_conv2=bias_variable([64]) h_conv2=tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2) h_pool2=max_poo_(h_conv2) W_fc1=weight_varirable([7*7*64,1024]) b_fc1=bias_variable([1024]) h_pool2_flat=tf.reshape(h_pool2,[-1,7*7*64]) h_fcl=tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1) h_fc1_drop=tf.nn.dropout(h_fcl,keep_prob) W_fc2=weight_varirable([1024,10]) b_fc2=bias_variable([10]) prediction=tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2) cross_entropy=tf.reduce_mean( -tf.reduce_sum(ys*tf.log(prediction), reduction_indices=[1])) train_step=tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) sess=tf.Session() sess.run(tf.global_variables_initializer()) for i in range(1000): batch_xs, batch_ys = mnist.train.next_batch(100) sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys,keep_prob:0.5}) if i % 50 == 0: print(compute_accuracy( mnist.test.images, mnist.test.labels))
如果有同学没有MINST数据,请到http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_download.html下载,或者QQ问我