• python socket--TCP解决粘包的方法


    1.为什么会出现粘包??

    让我们基于tcp先制作一个远程执行命令的程序(1:执行错误命令 2:执行ls 3:执行ifconfig)

    注意注意注意:

    res=subprocess.Popen(cmd.decode('utf-8'),
    shell=True,
    stderr=subprocess.PIPE,
    stdout=subprocess.PIPE)

    的结果的编码是以当前所在的系统为准的,如果是windows,那么res.stdout.read()读出的就是GBK编码的,在接收端需要用GBK解码

    发送端可以是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流(stream),一条消息有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议,这也是容易出现粘包问题的原因。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。怎样定义消息呢?可以认为对方一次性write/send的数据为一个消息,需要明白的是当对方send一条信息的时候,无论底层怎样分段分片,TCP协议层会把构成整条消息的数据段排序完成后才呈现在内核缓冲区。

    例如基于tcp的套接字客户端往服务端上传文件,发送时文件内容是按照一段一段的字节流发送的,在接收方看了,根本不知道该文件的字节流从何处开始,在何处结束

    所谓粘包问题主要还是因为接收方不知道消息之间的界限,不知道一次性提取多少字节的数据所造成的。

    此外,发送方引起的粘包是由TCP协议本身造成的,TCP为提高传输效率,发送方往往要收集到足够多的数据后才发送一个TCP段。若连续几次需要send的数据都很少,通常TCP会根据优化算法把这些数据合成一个TCP段后一次发送出去,这样接收方就收到了粘包数据。

    1. TCP(transport control protocol,传输控制协议)是面向连接的,面向流的,提供高可靠性服务。收发两端(客户端和服务器端)都要有一一成对的socket,因此,发送端为了将多个发往接收端的包,更有效的发到对方,使用了优化方法(Nagle算法),将多次间隔较小且数据量小的数据,合并成一个大的数据块,然后进行封包。这样,接收端,就难于分辨出来了,必须提供科学的拆包机制。 即面向流的通信是无消息保护边界的。
    2. UDP(user datagram protocol,用户数据报协议)是无连接的,面向消息的,提供高效率服务。不会使用块的合并优化算法,, 由于UDP支持的是一对多的模式,所以接收端的skbuff(套接字缓冲区)采用了链式结构来记录每一个到达的UDP包,在每个UDP包中就有了消息头(消息来源地址,端口等信息),这样,对于接收端来说,就容易进行区分处理了。 即面向消息的通信是有消息保护边界的。
    3. tcp是基于数据流的,于是收发的消息不能为空,这就需要在客户端和服务端都添加空消息的处理机制,防止程序卡住,而udp是基于数据报的,即便是你输入的是空内容(直接回车),那也不是空消息,udp协议会帮你封装上消息头,实验略

    udp的recvfrom是阻塞的,一个recvfrom(x)必须对唯一一个sendinto(y),收完了x个字节的数据就算完成,若是y>x数据就丢失,这意味着udp根本不会粘包,但是会丢数据,不可靠

    tcp的协议数据不会丢,没有收完包,下次接收,会继续上次继续接收,己端总是在收到ack时才会清除缓冲区内容。数据是可靠的,但是会粘包。

    两种情况下会发生粘包。

    发送端需要等缓冲区满才发送出去,造成粘包(发送数据时间间隔很短,数据了很小,会合到一起,产生粘包)

    #_*_coding:utf-8_*_
    __author__ = 'Linhaifeng'
    from socket import *
    ip_port=('127.0.0.1',8080)
    
    tcp_socket_server=socket(AF_INET,SOCK_STREAM)
    tcp_socket_server.bind(ip_port)
    tcp_socket_server.listen(5)
    
    
    conn,addr=tcp_socket_server.accept()
    
    
    data1=conn.recv(10)
    data2=conn.recv(10)
    
    print('----->',data1.decode('utf-8'))
    print('----->',data2.decode('utf-8'))
    
    conn.close()
    
    服务端
    #_*_coding:utf-8_*_
    __author__ = 'Linhaifeng'
    import socket
    BUFSIZE=1024
    ip_port=('127.0.0.1',8080)
    
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    res=s.connect_ex(ip_port)
    
    
    s.send('hello'.encode('utf-8'))
    s.send('feng'.encode('utf-8'))
    
    客户端

    接收方不及时接收缓冲区的包,造成多个包接收(客户端发送了一段数据,服务端只收了一小部分,服务端下次再收的时候还是从缓冲区拿上次遗留的数据,产生粘包) 

    #_*_coding:utf-8_*_
    __author__ = 'Linhaifeng'
    from socket import *
    ip_port=('127.0.0.1',8080)
    
    tcp_socket_server=socket(AF_INET,SOCK_STREAM)
    tcp_socket_server.bind(ip_port)
    tcp_socket_server.listen(5)
    
    
    conn,addr=tcp_socket_server.accept()
    
    
    data1=conn.recv(2) #一次没有收完整
    data2=conn.recv(10)#下次收的时候,会先取旧的数据,然后取新的
    
    print('----->',data1.decode('utf-8'))
    print('----->',data2.decode('utf-8'))
    
    conn.close()
    
    服务端
    

      

    #_*_coding:utf-8_*_
    __author__ = 'Linhaifeng'
    import socket
    BUFSIZE=1024
    ip_port=('127.0.0.1',8080)
    
    s=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    res=s.connect_ex(ip_port)
    
    
    s.send('hello feng'.encode('utf-8'))
    
    客户端
    

      

    拆包的发生情况

    当发送端缓冲区的长度大于网卡的MTU时,tcp会将这次发送的数据拆成几个数据包发送出去。

    补充问题一:为何tcp是可靠传输,udp是不可靠传输

    基于tcp的数据传输请参考我的另一篇文章http://www.cnblogs.com/linhaifeng/articles/5937962.html,tcp在数据传输时,发送端先把数据发送到自己的缓存中,然后协议控制将缓存中的数据发往对端,对端返回一个ack=1,发送端则清理缓存中的数据,对端返回ack=0,则重新发送数据,所以tcp是可靠的

    而udp发送数据,对端是不会返回确认信息的,因此不可靠

    补充问题二:send(字节流)和recv(1024)及sendall

    recv里指定的1024意思是从缓存里一次拿出1024个字节的数据

    send的字节流是先放入己端缓存,然后由协议控制将缓存内容发往对端,如果待发送的字节流大小大于缓存剩余空间,那么数据丢失,用sendall就会循环调用send,数据不会丢失

    问题的根源在于,接收端不知道发送端将要传送的字节流的长度,所以解决粘包的方法就是围绕,如何让发送端在发送数据前,把自己将要发送的字节流总大小让接收端知晓,然后接收端来一个死循环接收完所有数据

    程序的运行速度远快于网络传输速度,所以在发送一段字节前,先用send去发送该字节流长度,这种方式会放大网络延迟带来的性能损耗

    2.解决粘包的方法

    为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,对端在接收时,先从缓存中取出定长的报头,然后再取真实数据

    struct模块 
    
    该模块可以把一个类型,如数字,转成固定长度的bytes
    
    >>> struct.pack('i',1111111111111)
    
    。。。。。。。。。
    
    struct.error: 'i' format requires -2147483648 <= number <= 2147483647 #这个是范围
    
    import json,struct
    #假设通过客户端上传1T:1073741824000的文件a.txt
    
    #为避免粘包,必须自定制报头
    header={'file_size':1073741824000,'file_name':'/a/b/c/d/e/a.txt','md5':'8f6fbf8347faa4924a76856701edb0f3'} #1T数据,文件路径和md5值
    
    #为了该报头能传送,需要序列化并且转为bytes
    head_bytes=bytes(json.dumps(header),encoding='utf-8') #序列化并转成bytes,用于传输
    
    #为了让客户端知道报头的长度,用struck将报头长度这个数字转成固定长度:4个字节
    head_len_bytes=struct.pack('i',len(head_bytes)) #这4个字节里只包含了一个数字,该数字是报头的长度
    
    #客户端开始发送
    conn.send(head_len_bytes) #先发报头的长度,4个bytes
    conn.send(head_bytes) #再发报头的字节格式
    conn.sendall(文件内容) #然后发真实内容的字节格式
    
    #服务端开始接收
    head_len_bytes=s.recv(4) #先收报头4个bytes,得到报头长度的字节格式
    x=struct.unpack('i',head_len_bytes)[0] #提取报头的长度
    
    head_bytes=s.recv(x) #按照报头长度x,收取报头的bytes格式
    header=json.loads(json.dumps(header)) #提取报头
    
    #最后根据报头的内容提取真实的数据,比如
    real_data_len=s.recv(header['file_size'])
    s.recv(real_data_len)
    

      

    我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)

    发送时:

    先发报头长度

    再编码报头内容然后发送

    最后发真实内容

    接收时:

    先手报头长度,用struct取出来

    根据取出的长度收取报头内容,然后解码,反序列化

    从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容

    #为字节流加上自定义固定长度报头,报头中包含字节流长度,然后一次send到对端,
    # 对端在接收时,先从缓存中取出定长的报头,然后再取真实数据
    
    #struct模块
    # 该模块可以把一个类型,如数字,转成固定长度的bytes
    
    
    
    '''
    我们可以把报头做成字典,字典里包含将要发送的真实数据的详细信息,然后json序列化,
    然后用struck将序列化后的数据长度打包成4个字节(4个自己足够用了)
    发送时:
    先发报头长度
    再编码报头内容然后发送
    最后发真实内容
    
    接收时:
    先手报头长度,用struct取出来
    根据取出的长度收取报头内容,然后解码,反序列化
    从反序列化的结果中取出待取数据的详细信息,然后去取真实的数据内容
    '''
    # >>> struct.pack("i","abc")
    # Traceback (most recent call last):
    #   File "<pyshell#1>", line 1, in <module>
    #     struct.pack("i","abc")
    # struct.error: required argument is not an intege
    
    #服务端(定制稍微复杂一点的报头)
    
    import socket,struct,json
    import subprocess
    
    
    phone=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    ip_sort=("127.0.0.1",8080)
    back_log=5
    phone.setsockopt(socket.SOL_SOCKET,socket.SO_REUSEADDR,1)
    phone.bind(ip_sort)
    phone.listen(back_log)
    
    while True:
        conn,addr=phone.accept()
        while True:
            cmd=conn.recv(1024)
            if not cmd:break
            print("cmd: %s" %cmd)
            res=subprocess.Popen(cmd.decode("utf-8"),shell=True,stdout=subprocess.PIPE,stderr=subprocess.PIPE
                                 ,stdin=subprocess.PIPE)
            err=res.stderr.read()
            print(err)
            if err:
                back_msg=err
            else:
                back_msg=res.stdout.read()
    
            headers={'data_size':len(back_msg)}
            head_json=json.dumps(headers)#序列化成字符串
            print(type(head_json))
            head_json_bytes=bytes(head_json,encoding="utf-8")
    
    
            #struct.pack("i"转换成包的类型,第二个参数必须是数字)
            conn.send(struct.pack("i",len(head_json_bytes)))#先发报头的长度
            conn.send(head_json.encode("utf-8"))#再发报头
            conn.sendall(back_msg)#再发真实的内容
    
        conn.close()
    

      

    #客户端解决粘包的方法
    import socket,struct,json
    
    ip_port=("127.0.0.1",8080)
    
    tcp_client=socket.socket(socket.AF_INET,socket.SOCK_STREAM)
    
    tcp_client.connect_ex(ip_port)
    
    while True:
        cmd=input(">>")
        if not cmd:continue
        tcp_client.send(cmd.encode('utf-8'))
    
    
        data=tcp_client.recv(4)#接收报头消息长度
        num=struct.unpack("i",data)[0]#unpack解包出来是一个元祖
        print(num)
        header=json.loads(tcp_client.recv(num).decode("utf-8"))#通过接受报头长度接受报头
        data_len=header["data_size"]#获取发送消息的长度
    
        recv_size=0
        recv_data=b''
        while recv_size<data_len:
            recv_data+=tcp_client.recv(1024)
            recv_size=len(recv_data)
    
        print(recv_data.decode("gbk"))
        #print(recv_data.decode("GBK")) #windows默认编码为GBK
    如果我失败了,至少我尝试过,不会因为痛失机会而后悔
  • 相关阅读:
    VUE可随意拖动的弹窗组件
    入园仪式
    Node启动https服务器
    《高性能javascript》阅读摘要
    浏览器HTTP缓存机制
    使用nightwatch进行E2E测试中文教程
    Puppeteer的入门教程和实践
    Spring AOP 笔记
    ApplicationContext国际化的支持
    Spring ApplicationContext中的”事件传递“笔记
  • 原文地址:https://www.cnblogs.com/tangcode/p/11620151.html
Copyright © 2020-2023  润新知