TF中文社区
TF_GOOGLE官方代码学习
1.TensorFlow-Slim:
TF-Slim 是 tensorflow 较新版本的扩充包,可以简化繁杂的网络定义,其中也提供了一些demo:
- AlexNet
- InceptionV1/V2/V3
- OverFeat
- ResNet
- VGG
例如 VGG-16 网络,寥寥数行就可以定义完毕:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
def vgg16(inputs): with slim.arg_scope([slim.conv2d, slim.fully_connected], activation_fn = tf.nn.relu, weights_initializer = tf.truncated_normal_initializer( 0.0 , 0.01 ), weights_regularizer = slim.l2_regularizer( 0.0005 )): net = slim.repeat(inputs, 2 , slim.conv2d, 64 , [ 3 , 3 ], scope = 'conv1' ) net = slim.max_pool2d(net, [ 2 , 2 ], scope = 'pool1' ) net = slim.repeat(net, 2 , slim.conv2d, 128 , [ 3 , 3 ], scope = 'conv2' ) net = slim.max_pool2d(net, [ 2 , 2 ], scope = 'pool2' ) net = slim.repeat(net, 3 , slim.conv2d, 256 , [ 3 , 3 ], scope = 'conv3' ) net = slim.max_pool2d(net, [ 2 , 2 ], scope = 'pool3' ) net = slim.repeat(net, 3 , slim.conv2d, 512 , [ 3 , 3 ], scope = 'conv4' ) net = slim.max_pool2d(net, [ 2 , 2 ], scope = 'pool4' ) net = slim.repeat(net, 3 , slim.conv2d, 512 , [ 3 , 3 ], scope = 'conv5' ) net = slim.max_pool2d(net, [ 2 , 2 ], scope = 'pool5' ) net = slim.fully_connected(net, 4096 , scope = 'fc6' ) net = slim.dropout(net, 0.5 , scope = 'dropout6' ) net = slim.fully_connected(net, 4096 , scope = 'fc7' ) net = slim.dropout(net, 0.5 , scope = 'dropout7' ) net = slim.fully_connected(net, 1000 , activation_fn = None , scope = 'fc8' ) return net |
2.项目介绍:
风格迁移:
3.开源代码:
- VGG: machrisaa/tensorflow-vgg
- Faster RCNN: smallcorgi/Faster-RCNN_TF
- SSD: seann999/ssd_tensorflow
- YOLO: gliese581gg/YOLO_tensorflow
- FCN: MarvinTeichmann/tensorflow-fcn
- SegNet: tkuanlun350/Tensorflow-SegNet
- DeepLab: DrSleep/tensorflow-deeplab-lfov, DrSleep/tensorflow-deeplab-resnet
- Neural Style: anishathalye/neural-style
- Pix2Pix: affinelayer/pix2pix-tensorflow
- Colorization: shekkizh/Colorization.tensorflow
- Depth Prediction: iro-cp/FCRN-DepthPrediction
- Chessbot: Elucidation/tensorflow_chessbot
- DCGAN: carpedm20/DCGAN-tensorflow
- VAE-GAN: ikostrikov/TensorFlow-VAE-GAN-DRAW, timsainb/Tensorflow-MultiGPU-VAE-GAN
- Mask RCNN: CharlesShang/FastMaskRCNN