题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1043
思路分析:
<1> 搜索算法: A*算法, Heuristic函数:曼哈顿距离
<2> 剪枝技巧: 如果8数码问题中的初始状态的逆序数为奇数(除了’x’),则不存在解;否则,存在解;
代码如下:
#include <queue> #include <cmath> #include <cstdio> #include <cstring> #include <iostream> using namespace std; const int MAX_N = 362880 + 100; int map[9]; bool close[MAX_N]; char dir[MAX_N], direction[] = "udlr"; int open[MAX_N], pa[MAX_N], f[MAX_N]; const int FACT[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320}; const int MOVE[4][2] = {{0, -1}, {0, 1}, {-1, 0}, {1, 0}}; struct Node { int id; int f, g, h; int flags; // 表示该状态被松弛次数 Node() {} Node(int a_id, int a_g, int a_h, int a_flags) { id = a_id, g = a_g, h = a_h, flags = a_flags; f = g + h; } friend bool operator<(const Node &lhs, const Node &rhs); }; bool operator<(const Node &lhs, const Node &rhs) { return lhs.f > rhs.f; } priority_queue<Node> find_min; int StateToCanto() { int state_num = 1; for (int i = 0; i < 9; ++i) { int temp = map[i] - 1; for (int j = 0; j < i; ++j) temp -= (map[j] < map[i]); state_num += temp * FACT[8 - i]; } return state_num; } int StateToId() { int ans = 0; for (int i = 0; i < 9; ++i) ans = ans * 10 + map[i]; return ans; } void IdToState(int num) { int i = 8; while (num) { map[i--] = num % 10; num /= 10; } } int Heuristic() { int sum = 0; for (int i = 0; i < 3; i++) for (int j = 0; j < 3; j++) { int k = i * 3 + j; if (map[k] == 9) continue; sum += abs(i - (map[k] - 1) / 3) + abs(j - (map[k] - 1) % 3); } return sum; } inline bool inversionNumberCheck() { int cnt = 0; for (int i = 0; i < 9; ++i) { if (map[i] == 9) continue; for (int k = i - 1; k >= 0; --k) { if (map[k] == 9) continue; if (map[k] > map[i]) cnt++; } } return cnt & 1; } void FindX(int &x, int &y) { for (int i = 0; i < 9; ++i) { if (map[i] == 9) { y = i / 3; x = i % 3; return; } } } int A_star() { int state_canto, state_id; state_canto = StateToCanto(); state_id = StateToId(); open[state_canto] += 1; Node start(state_id, 0, Heuristic(), open[state_canto]); f[state_canto] = start.f; find_min.push(start); pa[state_canto] = -1; dir[state_canto] = '0'; if (state_id == 123456789) return state_canto; while (!find_min.empty()) { Node parent = find_min.top(); Node child; int p_x, p_y, c_x, c_y, parent_canto; find_min.pop(); IdToState(parent.id); parent_canto = StateToCanto(); if (parent.flags != open[parent_canto]) // 一个状态可能被松弛多次,检测parent是否为该状态最后一次松弛的状态 continue; close[StateToCanto()] = 1; // To do FindX(p_x, p_y); for (int i = 0; i < 4; ++i) { int temp_swap, child_state_conto; c_x = p_x; c_y = p_y; c_x += MOVE[i][0]; c_y += MOVE[i][1]; if (c_x < 0 || c_x >= 3 || c_y < 0 || c_y >= 3) continue; temp_swap = map[p_x + p_y * 3]; map[p_x + p_y * 3] = map[c_x + c_y * 3]; map[c_x + c_y * 3] = temp_swap; child_state_conto = StateToCanto(); if (close[child_state_conto] == 1) { temp_swap = map[p_x + p_y * 3]; map[p_x + p_y * 3] = map[c_x + c_y * 3]; map[c_x + c_y * 3] = temp_swap; continue; } child.id = StateToId(); if (child.id == 123456789) { pa[child_state_conto] = parent_canto; dir[child_state_conto] = direction[i]; return child_state_conto; } child.h = Heuristic(); child.g = parent.g + 1; child.f = child.g + child.h; child.flags = open[child_state_conto] + 1; pa[child_state_conto] = parent_canto; dir[child_state_conto] = direction[i]; if (open[child_state_conto] == 0 || f[child_state_conto] > child.f) { f[child_state_conto] = child.f; open[child_state_conto] = child.flags; find_min.push(child); } temp_swap = map[p_x + p_y * 3]; map[p_x + p_y * 3] = map[c_x + c_y * 3]; map[c_x + c_y * 3] = temp_swap; } } return -1; } void Find(int i) { if (pa[i] == -1) return; else { Find(pa[i]); printf("%c", dir[i]); } } void PrintPath() { int end_canto; for (int i = 0; i < 9; ++i) map[i] = i + 1; end_canto = StateToCanto(); Find(end_canto); printf(" "); } int main() { int ans = 0; while (scanf("%s", &map[0]) != EOF) { map[0] = (map[0] == 'x' ? 9 : (map[0] -= '0')); for (int i = 1; i < 9; ++i) { scanf("%s", &map[i]); map[i] = (map[i] == 'x' ? 9 : (map[i] -= '0')); } if (inversionNumberCheck()) { printf("unsolvable "); continue; } memset(open, 0, sizeof(open)); memset(close, 0, sizeof(close)); memset(pa, 0, sizeof(pa)); memset(f, 0, sizeof(f)); memset(dir, 0, sizeof(dir)); ans = A_star(); if (ans == -1) printf("unsolvable "); else PrintPath(); while (find_min.empty()) find_min.pop(); } return 0; }