• Hive 窗口函数使用(1)


    一、窗口函数
    官方文档地址:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics
    oracle,sqlserver都提供了窗口函数,但是在mysql5.5和5.6都没有提供窗口函数!

    窗口函数: 窗口+函数
    窗口: 函数运行时计算的数据集的范围
    函数: 运行的函数!
    仅仅支持以下函数:
    Windowing functions:
    LEAD:
    LEAD (scalar_expression [,offset] [,default]): 返回当前行以下N行的指定列的列值!
    如果找不到,就采用默认值
    LAG:
    LAG (scalar_expression [,offset] [,default]): 返回当前行以上N行的指定列的列值!
    如果找不到,就采用默认值
    FIRST_VALUE:
    FIRST_VALUE(列名,[false(默认)]): 返回当前窗口指定列的第一个值,
    第二个参数如果为true,代表加入第一个值为null,跳过空值,继续寻找!
    LAST_VALUE:
    LAST_VALUE(列名,[false(默认)]): 返回当前窗口指定列的最后一个值,
    第二个参数如果为true,代表加入第一个值为null,跳过空值,继续寻找!
    统计类的函数(一般都需要结合over使用): min,max,avg,sum,count
    排名分析:
    RANK
    ROW_NUMBER
    DENSE_RANK
    CUME_DIST
    PERCENT_RANK
    NTILE

    注意:不是所有的函数在运行都是可以通过改变窗口的大小,来控制计算的数据集的范围!
    所有的排名函数和LAG,LEAD,支持使用over(),但是在over()中不能定义 window_clause

    格式: 函数 over( partition by 字段 ,order by 字段 window_clause )


    窗口的大小可以通过windows_clause来指定:
    (rows | range) between (unbounded | [num]) preceding and ([num] preceding | current row | (unbounded | [num]) following)
    (rows | range) between current row and (current row | (unbounded | [num]) following)
    (rows | range) between [num] following and (unbounded | [num]) following

    特殊情况: ①在over()中既没有出现windows_clause,也没有出现order by,窗口默认为rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING
    ②在over()中(没有出现windows_clause),指定了order by,窗口默认为rows between UNBOUNDED PRECEDING and CURRENT ROW

    窗口函数和分组有什么区别?
    ①如果是分组操作,select后只能写分组后的字段
    ②如果是窗口函数,窗口函数是在指定的窗口内,对每条记录都执行一次函数
    ③如果是分组操作,有去重效果,而partition不去重!

    business.name | business.orderdate | business.cost

    (9) 查询前20%时间的订单信息
    精确算法:
    select *
    from
    (select name,orderdate,cost,cume_dist() over(order by orderdate ) cdnum
    from business) tmp
    where cdnum<=0.2

    不精确计算:
    select *
    from
    (select name,orderdate,cost,ntile(5) over(order by orderdate ) cdnum
    from business) tmp
    where cdnum=1



    (8)查询顾客的购买明细及顾客最近三次cost花费

    最近三次: 当前和之前两次 或 当前+前一次+后一次

    当前和之前两次:
    select name,orderdate,cost,sum(cost) over(partition by name order by orderdate rows between 2 PRECEDING and CURRENT row)
    from business

    当前+前一次+后一次:
    select name,orderdate,cost,sum(cost) over(partition by name order by orderdate rows between 1 PRECEDING and 1 FOLLOWING)
    from business


    select name,orderdate,cost,cost+
    lag(cost,1,0) over(partition by name order by orderdate )+
    lead(cost,1,0) over(partition by name order by orderdate )
    from business



    (7) 查询顾客的购买明细及顾客本月最后一次购买的时间
    select name,orderdate,cost,LAST_VALUE(orderdate,true) over(partition by name,substring(orderdate,1,7) order by orderdate rows between CURRENT row and UNBOUNDED FOLLOWING)
    from business


    (6) 查询顾客的购买明细及顾客本月第一次购买的时间
    select name,orderdate,cost,FIRST_VALUE(orderdate,true) over(partition by name,substring(orderdate,1,7) order by orderdate )
    from business


    (5) 查询顾客的购买明细及顾客下次的购买时间
    select name,orderdate,cost,lead(orderdate,1,'无数据') over(partition by name order by orderdate )
    from business

    (4)查询顾客的购买明细及顾客上次的购买时间
    select name,orderdate,cost,lag(orderdate,1,'无数据') over(partition by name order by orderdate )
    from business



    (3)查询顾客的购买明细要将cost按照日期进行累加
    select name,orderdate,cost,sum(cost) over(partition by name order by orderdate )
    from business


    (2)查询顾客的购买明细及月购买总额

    select name,orderdate,cost,sum(cost) over(partition by name,substring(orderdate,1,7) )
    from business






    (1)查询在2017年4月份购买过的顾客及总人数

    count()在分组后,统计一个组内所有的数据!

    传统写法: 效率低
    with tmp as (select name
    from business
    where year(orderdate)=2017 and month(orderdate)=4
    group by name)

    select tmp.name,tmp1.totalcount
    from
    (select count(*) totalcount
    from tmp ) tmp1 join tmp;

    ---------------
    select name,count(*) over(rows between UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING)
    from business
    where substring(orderdate,1,7)='2017-04'
    group by name

    等价于

    select name,count(*) over()
    from business
    where substring(orderdate,1,7)='2017-04'
    group by name

  • 相关阅读:
    多线程:多线程设计模式(一):总体介绍
    javascript:12种JavaScript MVC框架之比较
    mysql 查询死锁语句
    charles 抓包工具破解方法
    java 自定义log类
    git统计日期之间的代码改动行数
    mac/linux自带定时任务执行crontab的使用
    python MD5步骤
    python 操作excel读写
    python logger日志工具类
  • 原文地址:https://www.cnblogs.com/tafee/p/14076804.html
Copyright © 2020-2023  润新知