• 哈尔滨工业大学计算机学院-自然语言处理-课程总结


    1. 前言

    • 自然语言处理是关毅老师的研究生课程。
    • 本博客仅对噪声信道模型、n元文法(N-gram语言模型)、维特比算法详细介绍。
    • 其他的重点知识还包括概率上文无关文法(PCFG)、HMM形式化定义、词网格分词等等,比较简单,不做赘述。

    2. 噪声信道模型

    2.1 噪声信道模型原理

    • 噪声信道模型的示意图如下所示:
    • 该模型的目标是通过有噪声的输出信号试图恢复输入信号,依据贝叶斯公式,其计算公式如下所示:

    [I = arg max _ { I } P ( I | O ) = arg max _ { I } frac { P ( O | I ) P ( I ) } { P ( O ) } = arg max _ { I } P ( O | I ) P ( I ) ]

    • (I)指输入信号,(O)指输出信号。
    • 噪声模型的优点是具有普适性,通过修改噪声信道的定义,可以将很多常见的应用纳入到这一模型的框架之中,相关介绍见2.1。

    2.2 噪声信道模型的应用

    2.2.1 语音识别

    • 语音识别的目的是通过声学信号,找到与其对应的置信度最大的语言文本。
    • 计算公式与上文相同,此时的(I)为语言文本,(O)为声学信号。
    • 代码实现过程中,有一个信息源以概率(P(I))生成语言文本,噪声信道以概率分布(P(O|I))将语言文本转换为声学信号。
    • 模型通过贝叶斯公式对后验概率(P(I|O))进行计算。

    2.2.2 其他应用

    • 手写汉字识别
      • 文本 -> 书写 -> 图像
    • 文本校错
      • 文本 -> 输入编辑 -> 带有错误的文本
    • 音字转换
      • 文本 -> 字音转换 -> 拼音编码
    • 词性标注
      • 词性标注序列 -> 词性词串替换 -> 词串

    3. N-gram语言模型

    3.1 N-gram语言模型原理

    • N-gram语言模型基于马尔可夫假设,即下一个词的出现仅仅依赖于他前面的N个词,公式如下:

    [P ( S ) = P left( w _ { 1 } w _ { 2 } dots w _ { n } ight) = p left( w _ { 1 } ight) p left( w _ { 2 } | w _ { 1 } ight) p left( w _ { 3 } | w _ { 1 } w _ { 2 } ight) ldots p left( w _ { n } | w _ { 1 } w _ { 2 } dots w _ { n - 1 } ight) ]

    • 实践中,往往采用最大似然估计的方式进行计算:

    [P left( w _ { n } | w _ { 1 } w _ { 2 } dots w _ { n - 1 } ight) = frac { C left( w _ { 1 } w _ { 2 } ldots w _ { n } ight) } { C left( w _ { 1 } w _ { 2 } dots w _ { n - 1 } ight) } ]

    • 在训练语料库中统计获得字串的频度信息。

    • n越大: 对下一个词出现的约束性信息更多,更大的辨别力

    • n越小: 在训练语料库中出现的次数更多,更可靠的统计结果,更高的可靠性

    3.2 平滑处理

    • 如果不进行平滑处理,会面临数据稀疏的问题,这会使联合概率的其中一项值为0,从而导致句子的整体概率值为0。

    3.2.1 加一平滑法(拉普拉斯定律)

    • 公式如下:

    [P _ { L a p } left( w _ { 1 } w _ { 2 } , ldots w _ { n } ight) = frac { C left( w _ { 1 } w _ { 2 } dots w _ { n } ight) + 1 } { N + B } , left( B = | V | ^ { n } ight) ]

    • 实际运算时,(N)为条件概率中先验字串的频度。

    3.2.2 其他平滑方法

    • Lidstone定律
    • Good-Turing估计
    • Back-off平滑

    4. 维特比算法

    4.1 维特比算法原理

    • 维特比算法用于解决HMM三大问题中的解码问题,即给定一个输出字符序列和HMM模型参数,如何确定模型产生这一序列概率最大的状态序列。

    [arg max _ { X } P ( X | O ) = arg max _ { X } frac { P ( X , O ) } { P ( O ) } = arg max _ { X } P ( X , O ) ]

    • (O)是输出字符序列,(X)是状态序列。
    • 维特比算法迭代过程如下:
      • 初始化

    [egin{array} { l } { delta _ { 1 } ( i ) = pi _ { i } b _ { i } left( o _ { 1 } ight) } \ { psi _ { 1 } ( i ) = 0 } end{array} ]

    • 递归

    [egin{array} { c } { delta _ { t + 1 } ( j ) = underset { 1 leq i leq N } max delta _ { t } ( i ) a _ { i j } b _ { j } left( o _ { t + 1 } ight) } \ { psi _ { t + 1 } ( j ) = underset { 1 leq i leq N } { arg max } delta _ { t } ( i ) a _ { i j } b _ { j } left( o _ { t + 1 } ight) } end{array} ]

    • 结束

    [egin{array} { c } { P ^ { * } = max _ { 1 leq i leq N } delta _ { T } ( i ) } \ { q _ { T } ^ { * } = underset { 1 leq i leq N } { arg max } delta _ { T } ( i ) } end{array} ]

    • 最优路径(状态序列)

    [q _ { t } ^ { * } = psi _ { t + 1 } left( q _ { t + 1 } ^ { * } ight) , quad t = T - 1 , ldots , 1 ]

    • 上述迭代过程,(a)状态转移矩阵,(b)是状态-输出发射矩阵。

    4.2 维特比算法例子

    • 例子:

    • 计算过程:

      • 第一次迭代(此时的输出字符为A):

    [delta _ { 1 } ( 0 ) = 0.5*0.5=0.25​ ]

    [delta _ { 1 } ( 1 ) = 0.5*0.3=0.15​ ]

    [delta _ { 1 } ( 2 ) = 0*0.2=0​ ]

    • 第二次迭代(此时的输出字符为B):

    [delta _ { 2 } ( 0 ) = max(0.25*0.3*0.3, 0, 0)=0.0225 ]

    [delta _ { 2 } ( 1 ) =max(0.25*0.2*0.4, 0.15*0.4*0.4, 0)=0.024 ]

    [delta _ { 2 } ( 2 ) = max(0.25*0.5*0.3, 0.15*0.6*0.3, 0)=0.0375 ]

    • 第三次迭代(此时的输出字符为C):

    [delta _ { 3 } ( 0 ) = max(0.0225*0.3*0.2, 0, 0)=0.00135 ]

    [delta _ { 3 } ( 1 ) =max(0.0225*0.2*0.3, 0.024*0.4*0.3, 0)=0.00288 ]

    [delta _ { 3 } ( 2 ) =max(0.0225*0.5*0.5, 0.024*0.6*0.5, 0)=0.0072 ]

    • 最终答案:

      • 选择最优路径的时候从后往前选,选择最后一列最大的概率值为最终结果。
        • (0.0072))。
      • 接着寻找上一步中生成该概率值((0.0072))的数作为前一步结果。
        • (0.024),因为(0.024*0.6*0.5=0.0072)
      • 以此类推。

    4.3 维特比算法应用

    4.3.1 基于HMM的词性标注

    • HMM的状态集合:词性标记集合
      • (t_i)为为词性标记集合中的第(i)个词性标记。
    • HMM的输出字符集合:词汇集合
    • (pi _ { mathrm { i } }):词性标记(t_i)初始概率
    • (a_{ij}):从词性标记(t_i)(t_j)的状态转移概率
    • (b_{jk}):词性标记(t_j)对应的词(w_k)的发射概率
  • 相关阅读:
    叮咚抢菜派送时段监听及推送工具🔧
    Dom的几何属性(宽高、位置等)
    hosts配置
    vue深度监听对象
    抛出和引入
    老生常谈的Mysql事务与MVCC
    不太一样的Go Web框架—编程范式
    不太一样的Go Web框架—总览
    理解:TPS,QPS,吞吐量
    适合中小团队的 Git 服务 Gitblit
  • 原文地址:https://www.cnblogs.com/szxspark/p/10262161.html
Copyright © 2020-2023  润新知