• POJ 3070 Fibonacci(矩阵快速幂模板)


    Description:

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input:

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output:

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input:

    0
    9
    999999999
    1000000000
    -1

    Sample Output:

    0
    34
    626
    6875

    Hint:

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by.

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:  .

    题意:就是要求第n个Fibonacci数对10000的取余,由于n很大,简单模拟肯定不行,那么就引出了Fibonacci的另一种表示方法(题中已给),根据描述,我们只要求出2*2的矩阵{{1,1},{1,0}}^n就可以了。

    由此引出新算法:矩阵快速幂(根据快速幂改编而来,快速幂计算的是数的n次方,而这个求的是矩阵的n次方)。

    #include<stdio.h>
    #include<string.h>
    #include<queue>
    #include<math.h>
    #include<stdlib.h>
    #include<algorithm>
    using namespace std;
    
    const int N=1e6+10;
    const int INF=0x3f3f3f3f;
    const int MOD=1e4;
    
    typedef long long LL;
    
    struct node
    {
        LL m[2][2];
    }ans, tmp, cnt;
    
    node Multiply(node a, node b) ///计算两个矩阵相乘之后的矩阵
    {
        int i, j, k;
    
        for (i = 0; i < 2; i++)
        {
            for (j = 0; j < 2; j++)
            {
                cnt.m[i][j] = 0;
                for (k = 0; k < 2; k++)
                    cnt.m[i][j] = (cnt.m[i][j]+a.m[i][k]*b.m[k][j])%MOD;
            }
        }
    
        return cnt;
    }
    
    LL Matrix_power(LL n) 
    {
        ans.m[0][0] = ans.m[1][1] = 1;
        ans.m[0][1] = ans.m[1][0] = 0;
        tmp.m[0][0] = tmp.m[0][1] = tmp.m[1][0] = 1;
        tmp.m[1][1] = 0;
    
        while (n) ///和快速幂求法一致
        {
            if (n % 2 != 0)
                ans = Multiply(ans, tmp);
    
            tmp = Multiply(tmp, tmp);
    
            n /= 2;
        }
    
        return ans.m[0][1]; ///由于第n个Fibonacci数存在于{Fn+1,Fn,Fn,Fn-1}中,所以我们返回(0,1)位置上的元素即可
    }
    
    int main ()
    {
        LL n, num;
    
        while (scanf("%lld", &n), n != -1)
        {
            num = Matrix_power(n);
            printf("%lld
    ", num);
        }
    
        return 0;
    }
  • 相关阅读:
    rpm包方式安装oracle21c
    有限广播地址与直接广播地址
    忽略大小写查看文件夹下重复的文件方法
    No spring.config.import property has been defined 规格严格
    application.properties 转 yaml ( 在线) 规格严格
    PG快速构建海量数据方法 规格严格
    Postgresql 查看建表语句 命令 规格严格
    一文读懂PostgreSQL数据库透明数据加密 规格严格
    PG锁监控 规格严格
    Spring Cloud Config Client 规格严格
  • 原文地址:https://www.cnblogs.com/syhandll/p/4978731.html
Copyright © 2020-2023  润新知