• LeetCode 1143. 最长公共子序列


    1143. 最长公共子序列

    Difficulty: 中等

    给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

    一个字符串的 _子序列 _是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
    例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

    若这两个字符串没有公共子序列,则返回 0。

    示例 1:

    输入:text1 = "abcde", text2 = "ace" 
    输出:3  
    解释:最长公共子序列是 "ace",它的长度为 3。
    

    示例 2:

    输入:text1 = "abc", text2 = "abc"
    输出:3
    解释:最长公共子序列是 "abc",它的长度为 3。
    

    示例 3:

    输入:text1 = "abc", text2 = "def"
    输出:0
    解释:两个字符串没有公共子序列,返回 0。
    

    提示:

    • 1 <= text1.length <= 1000
    • 1 <= text2.length <= 1000
    • 输入的字符串只含有小写英文字符。

    Solution

    这是一道考察动态规划的题目,在面试中出现的频率也比较高。题目要求返回两个字符串的最长公共子序列的长度LCS(xm,yn),并且字符串还要保持相对顺序。考虑两个字符串序列x=(x1,x2,...,xm)y=(y1,y2,...,yn),从两个序列的最后一个元素开始考察:

    1. 如果xm=yn,那么说明这个元素一定在这个最长子序列中,看清楚,是一定,然后找LCS(xm-1,yn-1)的解
    2. 如果xm!=yn,那么此时问题转化为求解LCS(xm-1,yn)和LCS(xm,yn-1)两个子问题,谁更大谁就是LCS(xm,yn)的最优解

    油管上有一位大神把这道题目求解过程分析得很清楚,可以去观摩学习一下:Longest Common Subsequence (2 Strings)

    class Solution:
        def longestCommonSubsequence(self, text1: str, text2: str) -> int:
            if not text1 or not text2:
                return 0
            m, n = len(text1), len(text2)
            dp = [[0] * (n+1) for _ in range(m+1)]
            for i in range(1, m + 1):
                for j in range(1, n + 1):
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
                    if text1[i-1] == text2[j-1]:
                        dp[i][j] = max(dp[i][j], 1 + dp[i-1][j-1])
            return dp[m][n]
    
  • 相关阅读:
    cssReset
    CSS的一些小技巧
    前端图标神器
    单例模式
    CSS 控制Html页面高度导致抖动问题的原因
    PHP中include()与require()的区别说明
    extends和implements区别
    静态,抽象类、接口、类库
    jQuery轮播图(手动点击轮播)
    jQuery实现大图轮播
  • 原文地址:https://www.cnblogs.com/swordspoet/p/14578870.html
Copyright © 2020-2023  润新知