【Question】
-
Given an array of integers, return indices of the two numbers such that they add up to a specific target.
You may assume that each input would have exactly one solution.
-
Example:
Given nums = [2, 7, 11, 15], target = 9,
Because nums[0] + nums[1] = 2 + 7 = 9,
return [0, 1].
【My Solution】
- Brute Force
class Solution(object):
def twoSum_update(self, nums ,target):
"""
Brute Force: Loop through each element x
find if there is another value that equals to target - x
"""
l = len(nums)
for i in range(l):
for j in range(i+1, l):
if (nums[i] == target - nums[j]):
return [i,j]
raise ValueError("No two sum solution")
-
分析
双重循环遍历查询满足条件的数值 -
Complexity Analyze:
-
Time complexity : \(O(n^2)\). For each element, we try to find its complement by looping through the rest of array which takes \(O(n)\) time. Therefore, the time complexity is \(O(n^2)\). 容易出现TLE
-
Space complexity : \(O(1)\).
【Other Solution #1】
- Two-pass Hash Table 两段式哈希表
class Solution(object):
def twoSum(self, nums ,target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
l = len(nums)
hash = {}
for i in range(l):
hash[nums[i]] = i
for i in range(l):
if target-nums[i] in hash and hash[target-nums[i]]!=i:
return [i, hash[target-nums[i]]]
raise ValueError("No two sum solution")
-
分析
利用Python中的dict来进行对求差所得的数值的查找。由于dict采用哈希结构,查找所需时间接近 \(O(1)\) (在发生冲突时可能会退化到 \(O(n)\) ),通过空间换取时间。最简单的实现方式是采用两轮循环,第一轮将每个元素及其索引添加进哈希表,第二轮检查当前元素对于target的补数是否在这个表中,另外要注意的是该补数不能是当前元素。 -
Complexity Analyze:
-
Time complexity : \(O(n)\). We traverse the list containing n elements exactly twice. Since the hash table reduces the look up time to \(O(1)\), the time complexity is \(O(n)\).
-
Space complexity : \(O(n)\). The extra space required depends on the number of items stored in the hash table, which stores exactly n elements.
【Other Solution #2】
- One-pass Hash Table 一段式哈希表
class Solution(object):
def twoSum(self, nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
l = len(nums)
hash_map = {}
for i in range(l):
if target-nums[i] in hash_map:
return [hash_map[target-nums[i]], i]
hash_map[nums[i]] = i
raise ValueError("No two sum solution")
-
分析
基于上面的两段式哈希表,可以改进成一段式哈希表,在循环遍历元素的时候进行哈希表的插入,并且可以同时回头查询当前元素的补数是否也存在于表中,存在的话可以立即返回。 -
Complexity Analysis:
-
Time complexity : \(O(n)\). We traverse the list containing nn elements only once. Each look up in the table costs only \(O(1)\) time. 虽然同样是 \(O(n)\),但比此前的方案少了一半的常数项。
-
Space complexity : \(O(n)\). The extra space required depends on the number of items stored in the hash table, which stores at most n elements. 空间上也比此前方案有了一定的优化,有时并不需要完全遍历一遍元素。