• hdu 1024 Max Sum Plus Plus


    Max Sum Plus Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 25639    Accepted Submission(s): 8884


    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     
    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     
    Output
    Output the maximal summation described above in one line.
     
    Sample Input
    1 3 1 2 3 2 6 -1 4 -2 3 -2 3
     
    Sample Output
    6 8
    Hint
    Huge input, scanf and dynamic programming is recommended.
     
    Author
    JGShining(极光炫影)
     
    Recommend
    We have carefully selected several similar problems for you:  1074 1081 1080 1160 1114 
     
    #include<iostream>
    #include<stdio.h>
    #include<string>
    #include<cstring>
    using namespace std;
    const int maxn = 1000010;
    int dp[maxn];
    int pri[maxn];
    int a[maxn];
    
    int main()
    {
        int n,m;
        while(~scanf("%d%d",&m,&n))
        {
            for(int i=1;i<=n;i++) scanf("%d",a+i);
            int tmp_max=-0x3fff;
            dp[0]=0;
            //pri[0]=0;
            memset(pri,0,sizeof(pri));
            for(int i=1;i<=m;i++)
            {
                tmp_max=-0x3fffffff;
                for(int j=i;j<=n;j++)
                {
                    dp[j]=max(dp[j-1],pri[j-1])+a[j];
                    pri[j-1]=tmp_max;
                    if(tmp_max<dp[j]) tmp_max=dp[j];
                }
    
            }
            printf("%d
    ",tmp_max);
        }
        return 0;
    }
    View Code

    设输入的数组为a[1...n],从中找出m个段,使者几个段的和为最大

    dp[i][j]表示前j个数中取i个段的和的最大值,其中最后一个段包含a[j]。(这很关键)

    则状态转移方程为:

    dp[i][j]=max{dp[i][j-1]+a[j],max{dp[i-1][t]}+a[j]}    i-1=<t<j-1

    因为dp[i][j]中a[j]可能就自身一个数组成最后一段,或者a[j]与a[j-1]等前面的数组成最后一段。

    此题n数据太大,二维数组开不下,而且三重循环,想到状态转移方程后还是困难重重。

    想想,二维数组不行的话,肯定要压缩成一维数组:

    因为dp[i-1][t]的值只在计算dp[i][j]的时候用到,那么没有必要保存所有的dp[i][j] for i=1 to m,这样我们可以用一维数组存储。

    用pre[j]表示j之前一个状态dp[i-1][]中1-j之间,不一定包含a[j]的最大字段和,然后推dp[i][j]状态时,dp[i][j]=max{pre[j-1],dp[j-1]}+a[j];

    褐色的为了方便理解,其实不存在。

  • 相关阅读:
    C# macro function via #define __FILE__ __LINE__ ___FUNCTION__ __DATE__ __TIME__
    3
    2月23号
    3月26
    impala故障
    2月3号日更
    HDFS某个节点的磁盘满了
    3月2
    mq集群
    3月3
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/5784292.html
Copyright © 2020-2023  润新知