• hdu 5446 Unknown Treasure Lucas定理+中国剩余定理


    Unknown Treasure

    Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
    Total Submission(s): 2209    Accepted Submission(s): 821


    Problem Description
    On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with MM is the product of several different primes.
     
    Input
    On the first line there is an integer T(T20) representing the number of test cases.

    Each test case starts with three integers n,m,k(1mn1018,1k10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1p2pk1018 and pi105 for every i{1,...,k}.
     
    Output
    For each test case output the correct combination on a line.
     
    Sample Input
    1 9 5 2 3 5
     
    Sample Output
    6
     
    Source
     
    Recommend
    hujie   |   We have carefully selected several similar problems for you:  5842 5841 5840 5839 5838 
     
    分析:
    根据Lucas求解中 每一个i:C(n,m)%pi,然后根据中国剩余定理把这些结果整合起来。就能得到答案。
    注意中国剩余定理在计算当前余数与其他余数乘积的最小公倍数的gcd为1的值时候,由于数据量太大,要取模。
    #include<iostream>
    #include<stdio.h>
    using namespace std;
    long long pri[15];
    long long a[15];
    long long ext_gcd(long long a,long long b,long long *x,long long *y)
    {
        if(b==0)
        {
            *x=1,*y=0;
            return a;
        }
        long long r = ext_gcd(b,a%b,x,y);
        long long t = *x;
        *x= *y;
        *y = t - a/b * *y;
        return r;
    }
    long long quick_mod(long long n,long long m,long long mod)
    {
        long long ans=1;
        while(m)
        {
            if(m&1)
                ans=(ans*n)%mod;
            m>>=1;
            n=(n*n)%mod;
        }
        return ans%mod;
    }
    long long get_c(long long n,long long m,long long mod)
    {
        long long a=1,b=1;
        for(int i=1; i<=m; i++)
        {
            b=b*i%mod;
            a=a*(n-i+1)%mod;
        }
        return (a*(quick_mod(b,mod-2,mod)))%mod;
    }
    long long Lucas(long long n,long long m,long long mod)
    {
        if(m==0) return 1;
        return (Lucas(n/mod,m/mod,mod)*get_c(n%mod,m%mod,mod))%mod;
    }
    long long mul(long long a,long long n,long long mod)
    {
        a = (a%mod+mod)%mod;
        n = (n%mod+mod)%mod;
        long long ret =0;
        while(n)
        {
            if(n&1)
                ret=(ret+a)%mod;
            a=(a+a)%mod;
            n>>=1;
        }
        return ret%mod;
    }
    long long chinese_reminder(long long a[],long long pri[],int len)
    {
        long long mul_pri=1;
        long long res=0;
        for(int i=0;i<len;i++)
        {
            mul_pri*=pri[i];
        }
        for(int i=0;i<len;i++)
        {
            long long m = mul_pri/pri[i];
            long long x,y;
            ext_gcd(pri[i],m,&x,&y);
            //res=(res+y*m*a[i])%mul_pri;
            res=(res+mul(mul(y,m,mul_pri),a[i],mul_pri))%mul_pri;
        }
        return ((res%mul_pri+mul_pri)%mul_pri);
    }
    int main()
    {
        int t;
        long long n,m;
        int k;
        scanf("%d",&t);
        while(t--)
        {
            scanf("%I64d%I64d%d",&n,&m,&k);
            for(int i=0; i<k; i++)
                scanf("%I64d",pri+i);
            for(int i=0; i<k; i++)
            {
                a[i]=Lucas(n,m,pri[i]);
            }
            long long ans = chinese_reminder(a,pri,k);
            printf("%I64d
    ",ans);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    zabbix 对/etc/ssh/sshd_config文件的监控 但status为unknowen
    Kotlin从零到精通Android开发
    谷歌官方 构建您的第一个应用 Kotlin版
    android studio 运行按钮为灰色的解决办法之一
    webapi发布到windows 2012的iis8里 出错
    Asp.net MVC WebApi项目的自动接口文档及测试功能打开方法
    Asp.net Web Api开发(第四篇)Help Page配置和扩展
    关于SNMP的MIB文件的语法简述
    Visual Stdio 2017增加SVN支持
    ffmpeg 多个音频合并 截取 拆分
  • 原文地址:https://www.cnblogs.com/superxuezhazha/p/5772357.html
Copyright © 2020-2023  润新知