Aaronson
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 425 Accepted Submission(s): 255
Problem Description
Recently, Peter saw the equation x0+2x1+4x2+...+2mxm=n. He wants to find a solution (x0,x1,x2,...,xm) in such a manner that ∑i=0mxi is minimum and every xi (0≤i≤m) is non-negative.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105), indicating the number of test cases. For each test case:
The first contains two integers n and m (0≤n,m≤109).
The first contains two integers n and m (0≤n,m≤109).
Output
For each test case, output the minimum value of ∑i=0mxi.
Sample Input
10
1 2
3 2
5 2
10 2
10 3
10 4
13 5
20 4
11 11
12 3
Sample Output
1
2
2
3
2
2
3
2
3
2
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<string> #include<vector> #include <ctime> #include<queue> #include<set> #include<map> #include<stack> #include<iomanip> #include<cmath> using namespace std; int main(){ int t; int a[32]; for(int i=0;i<31;i++){ a[i]=(1<<i); } scanf("%d",&t); while(t--){ int n,m; int ans=0; scanf("%d%d",&n,&m); int x =lower_bound(a,a+30,n)-a; for(int i=min(x,m);i>=0;i--){ ans+=(n/a[i]); n%=a[i]; if(n==0) break; } printf("%d ",ans); } return 0; }