• L10机器


    机器翻译和数据集

    机器翻译(MT):将一段文本从一种语言自动翻译为另一种语言,用神经网络解决这个问题通常称为神经机器翻译(NMT)。
    主要特征:输出是单词序列而不是单个单词。 输出序列的长度可能与源序列的长度不同。

    import os
    os.listdir('/home/kesci/input/')
    
    ['fraeng6506', 'd2l9528', 'd2l6239']
    
    import sys
    sys.path.append('/home/kesci/input/d2l9528/')
    import collections
    import d2l
    import zipfile
    from d2l.data.base import Vocab
    import time
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    from torch.utils import data
    from torch import optim
    

    数据预处理

    将数据集清洗、转化为神经网络的输入minbatch

    with open('/home/kesci/input/fraeng6506/fra.txt', 'r') as f:
          raw_text = f.read()
    print(raw_text[0:1000])
    
    Go.	Va !	CC-BY 2.0 (France) Attribution: tatoeba.org #2877272 (CM) & #1158250 (Wittydev)
    Hi.	Salut !	CC-BY 2.0 (France) Attribution: tatoeba.org #538123 (CM) & #509819 (Aiji)
    Hi.	Salut.	CC-BY 2.0 (France) Attribution: tatoeba.org #538123 (CM) & #4320462 (gillux)
    Run!	Cours !	CC-BY 2.0 (France) Attribution: tatoeba.org #906328 (papabear) & #906331 (sacredceltic)
    Run!	Courez !	CC-BY 2.0 (France) Attribution: tatoeba.org #906328 (papabear) & #906332 (sacredceltic)
    Who?	Qui ?	CC-BY 2.0 (France) Attribution: tatoeba.org #2083030 (CK) & #4366796 (gillux)
    Wow!	Ça alors !	CC-BY 2.0 (France) Attribution: tatoeba.org #52027 (Zifre) & #374631 (zmoo)
    Fire!	Au feu !	CC-BY 2.0 (France) Attribution: tatoeba.org #1829639 (Spamster) & #4627939 (sacredceltic)
    Help!	À l'aide !	CC-BY 2.0 (France) Attribution: tatoeba.org #435084 (lukaszpp) & #128430 (sysko)
    Jump.	Saute.	CC-BY 2.0 (France) Attribution: tatoeba.org #631038 (Shishir) & #2416938 (Phoenix)
    Stop!	Ça suffit !	CC-BY 2.0 (France) Attribution: tato
    
    def preprocess_raw(text):
        text = text.replace('u202f', ' ').replace('xa0', ' ')
        out = ''
        for i, char in enumerate(text.lower()):
            if char in (',', '!', '.') and i > 0 and text[i-1] != ' ':
                out += ' '
            out += char
        return out
    
    text = preprocess_raw(raw_text)
    print(text[0:1000])
    
    go .	va !	cc-by 2 .0 (france) attribution: tatoeba .org #2877272 (cm) & #1158250 (wittydev)
    hi .	salut !	cc-by 2 .0 (france) attribution: tatoeba .org #538123 (cm) & #509819 (aiji)
    hi .	salut .	cc-by 2 .0 (france) attribution: tatoeba .org #538123 (cm) & #4320462 (gillux)
    run !	cours !	cc-by 2 .0 (france) attribution: tatoeba .org #906328 (papabear) & #906331 (sacredceltic)
    run !	courez !	cc-by 2 .0 (france) attribution: tatoeba .org #906328 (papabear) & #906332 (sacredceltic)
    who?	qui ?	cc-by 2 .0 (france) attribution: tatoeba .org #2083030 (ck) & #4366796 (gillux)
    wow !	ça alors !	cc-by 2 .0 (france) attribution: tatoeba .org #52027 (zifre) & #374631 (zmoo)
    fire !	au feu !	cc-by 2 .0 (france) attribution: tatoeba .org #1829639 (spamster) & #4627939 (sacredceltic)
    help !	à l'aide !	cc-by 2 .0 (france) attribution: tatoeba .org #435084 (lukaszpp) & #128430 (sysko)
    jump .	saute .	cc-by 2 .0 (france) attribution: tatoeba .org #631038 (shishir) & #2416938 (phoenix)
    stop !	ça suffit !	cc-b
    

    字符在计算机里是以编码的形式存在,我们通常所用的空格是 x20 ,是在标准ASCII可见字符 0x20~0x7e 范围内。
    而 xa0 属于 latin1 (ISO/IEC_8859-1)中的扩展字符集字符,代表不间断空白符nbsp(non-breaking space),超出gbk编码范围,是需要去除的特殊字符。再数据预处理的过程中,我们首先需要对数据进行清洗。

    分词

    字符串—单词组成的列表

    num_examples = 50000
    source, target = [], []
    for i, line in enumerate(text.split('
    ')):
        if i > num_examples:
            break
        parts = line.split('	')
        if len(parts) >= 2:
            source.append(parts[0].split(' '))
            target.append(parts[1].split(' '))
            
    source[0:3], target[0:3]
    
    ([['go', '.'], ['hi', '.'], ['hi', '.']],
     [['va', '!'], ['salut', '!'], ['salut', '.']])
    
    d2l.set_figsize()
    d2l.plt.hist([[len(l) for l in source], [len(l) for l in target]],label=['source', 'target'])
    d2l.plt.legend(loc='upper right');
    

    建立词典

    单词组成的列表—单词id组成的列表

    def build_vocab(tokens):
        tokens = [token for line in tokens for token in line]
        return d2l.data.base.Vocab(tokens, min_freq=3, use_special_tokens=True)
    
    src_vocab = build_vocab(source)
    len(src_vocab)
    
    3789
    

    Image Name

    载入数据集

    def pad(line, max_len, padding_token):
        if len(line) > max_len:
            return line[:max_len]
        return line + [padding_token] * (max_len - len(line))
    pad(src_vocab[source[0]], 10, src_vocab.pad)
    
    [38, 4, 0, 0, 0, 0, 0, 0, 0, 0]
    
    def build_array(lines, vocab, max_len, is_source):
        lines = [vocab[line] for line in lines]
        if not is_source:
            lines = [[vocab.bos] + line + [vocab.eos] for line in lines]
        array = torch.tensor([pad(line, max_len, vocab.pad) for line in lines])
        valid_len = (array != vocab.pad).sum(1) #第一个维度
        return array, valid_len
    

    Image Name

    def load_data_nmt(batch_size, max_len): # This function is saved in d2l.
        src_vocab, tgt_vocab = build_vocab(source), build_vocab(target)
        src_array, src_valid_len = build_array(source, src_vocab, max_len, True)
        tgt_array, tgt_valid_len = build_array(target, tgt_vocab, max_len, False)
        train_data = data.TensorDataset(src_array, src_valid_len, tgt_array, tgt_valid_len)
        train_iter = data.DataLoader(train_data, batch_size, shuffle=True)
        return src_vocab, tgt_vocab, train_iter
    
    src_vocab, tgt_vocab, train_iter = load_data_nmt(batch_size=2, max_len=8)
    for X, X_valid_len, Y, Y_valid_len, in train_iter:
        print('X =', X.type(torch.int32), '
    Valid lengths for X =', X_valid_len,
            '
    Y =', Y.type(torch.int32), '
    Valid lengths for Y =', Y_valid_len)
        break
    
    X = tensor([[   5,   24,    3,    4,    0,    0,    0,    0],
            [  12, 1388,    7,    3,    4,    0,    0,    0]], dtype=torch.int32) 
    Valid lengths for X = tensor([4, 5]) 
    Y = tensor([[   1,   23,   46,    3,    3,    4,    2,    0],
            [   1,   15,  137,   27, 4736,    4,    2,    0]], dtype=torch.int32) 
    Valid lengths for Y = tensor([7, 7])
    

    Encoder-Decoder

    encoder:输入到隐藏状态
    decoder:隐藏状态到输出

    Image Name

    class Encoder(nn.Module):
        def __init__(self, **kwargs):
            super(Encoder, self).__init__(**kwargs)
    
        def forward(self, X, *args):
            raise NotImplementedError
    
    class Decoder(nn.Module):
        def __init__(self, **kwargs):
            super(Decoder, self).__init__(**kwargs)
    
        def init_state(self, enc_outputs, *args):
            raise NotImplementedError
    
        def forward(self, X, state):
            raise NotImplementedError
    
    class EncoderDecoder(nn.Module):
        def __init__(self, encoder, decoder, **kwargs):
            super(EncoderDecoder, self).__init__(**kwargs)
            self.encoder = encoder
            self.decoder = decoder
    
        def forward(self, enc_X, dec_X, *args):
            enc_outputs = self.encoder(enc_X, *args)
            dec_state = self.decoder.init_state(enc_outputs, *args)
            return self.decoder(dec_X, dec_state)
    

    可以应用在对话系统、生成式任务中。

    Sequence to Sequence模型

    模型:

    训练
    Image Name
    预测

    Image Name

    具体结构:

    Image Name

    Encoder

    class Seq2SeqEncoder(d2l.Encoder):
        def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                     dropout=0, **kwargs):
            super(Seq2SeqEncoder, self).__init__(**kwargs)
            self.num_hiddens=num_hiddens
            self.num_layers=num_layers
            self.embedding = nn.Embedding(vocab_size, embed_size)
            self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout)
       
        def begin_state(self, batch_size, device):
            return [torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens),  device=device),
                    torch.zeros(size=(self.num_layers, batch_size, self.num_hiddens),  device=device)]
        def forward(self, X, *args):
            X = self.embedding(X) # X shape: (batch_size, seq_len, embed_size)
            X = X.transpose(0, 1)  # RNN needs first axes to be time
            # state = self.begin_state(X.shape[1], device=X.device)
            out, state = self.rnn(X)
            # The shape of out is (seq_len, batch_size, num_hiddens).
            # state contains the hidden state and the memory cell
            # of the last time step, the shape is (num_layers, batch_size, num_hiddens)
            return out, state
    
    encoder = Seq2SeqEncoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2)
    X = torch.zeros((4, 7),dtype=torch.long)
    output, state = encoder(X)
    output.shape, len(state), state[0].shape, state[1].shape
    
    (torch.Size([7, 4, 16]), 2, torch.Size([2, 4, 16]), torch.Size([2, 4, 16]))
    

    Decoder

    class Seq2SeqDecoder(d2l.Decoder):
        def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                     dropout=0, **kwargs):
            super(Seq2SeqDecoder, self).__init__(**kwargs)
            self.embedding = nn.Embedding(vocab_size, embed_size)
            self.rnn = nn.LSTM(embed_size,num_hiddens, num_layers, dropout=dropout)
            self.dense = nn.Linear(num_hiddens,vocab_size)
    
        def init_state(self, enc_outputs, *args):
            return enc_outputs[1]
    
        def forward(self, X, state):
            X = self.embedding(X).transpose(0, 1)
            out, state = self.rnn(X, state)
            # Make the batch to be the first dimension to simplify loss computation.
            out = self.dense(out).transpose(0, 1)
            return out, state
    
    decoder = Seq2SeqDecoder(vocab_size=10, embed_size=8,num_hiddens=16, num_layers=2)
    state = decoder.init_state(encoder(X))
    out, state = decoder(X, state)
    out.shape, len(state), state[0].shape, state[1].shape
    
    (torch.Size([4, 7, 10]), 2, torch.Size([2, 4, 16]), torch.Size([2, 4, 16]))
    

    损失函数

    def SequenceMask(X, X_len,value=0):
        maxlen = X.size(1)
        mask = torch.arange(maxlen)[None, :].to(X_len.device) < X_len[:, None]   
        X[~mask]=value
        return X
    
    X = torch.tensor([[1,2,3], [4,5,6]])
    SequenceMask(X,torch.tensor([1,2]))
    
    tensor([[1, 0, 0],
            [4, 5, 0]])
    
    X = torch.ones((2,3, 4))
    SequenceMask(X, torch.tensor([1,2]),value=-1)
    
    tensor([[[ 1.,  1.,  1.,  1.],
             [-1., -1., -1., -1.],
             [-1., -1., -1., -1.]],
    
            [[ 1.,  1.,  1.,  1.],
             [ 1.,  1.,  1.,  1.],
             [-1., -1., -1., -1.]]])
    
    class MaskedSoftmaxCELoss(nn.CrossEntropyLoss):
        # pred shape: (batch_size, seq_len, vocab_size)
        # label shape: (batch_size, seq_len)
        # valid_length shape: (batch_size, )
        def forward(self, pred, label, valid_length):
            # the sample weights shape should be (batch_size, seq_len)
            weights = torch.ones_like(label)
            weights = SequenceMask(weights, valid_length).float()
            self.reduction='none'
            output=super(MaskedSoftmaxCELoss, self).forward(pred.transpose(1,2), label)
            return (output*weights).mean(dim=1)
    
    loss = MaskedSoftmaxCELoss()
    loss(torch.ones((3, 4, 10)), torch.ones((3,4),dtype=torch.long), torch.tensor([4,3,0]))
    
    tensor([2.3026, 1.7269, 0.0000])
    

    训练

    def train_ch7(model, data_iter, lr, num_epochs, device):  # Saved in d2l
        model.to(device)
        optimizer = optim.Adam(model.parameters(), lr=lr)
        loss = MaskedSoftmaxCELoss()
        tic = time.time()
        for epoch in range(1, num_epochs+1):
            l_sum, num_tokens_sum = 0.0, 0.0
            for batch in data_iter:
                optimizer.zero_grad()
                X, X_vlen, Y, Y_vlen = [x.to(device) for x in batch]
                Y_input, Y_label, Y_vlen = Y[:,:-1], Y[:,1:], Y_vlen-1
                
                Y_hat, _ = model(X, Y_input, X_vlen, Y_vlen)
                l = loss(Y_hat, Y_label, Y_vlen).sum()
                l.backward()
    
                with torch.no_grad():
                    d2l.grad_clipping_nn(model, 5, device)
                num_tokens = Y_vlen.sum().item()
                optimizer.step()
                l_sum += l.sum().item()
                num_tokens_sum += num_tokens
            if epoch % 50 == 0:
                print("epoch {0:4d},loss {1:.3f}, time {2:.1f} sec".format( 
                      epoch, (l_sum/num_tokens_sum), time.time()-tic))
                tic = time.time()
    
    embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.0
    batch_size, num_examples, max_len = 64, 1e3, 10
    lr, num_epochs, ctx = 0.005, 300, d2l.try_gpu()
    src_vocab, tgt_vocab, train_iter = d2l.load_data_nmt(
        batch_size, max_len,num_examples)
    encoder = Seq2SeqEncoder(
        len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
    decoder = Seq2SeqDecoder(
        len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
    model = d2l.EncoderDecoder(encoder, decoder)
    train_ch7(model, train_iter, lr, num_epochs, ctx)
    
    epoch   50,loss 0.093, time 38.2 sec
    epoch  100,loss 0.046, time 37.9 sec
    epoch  150,loss 0.032, time 36.8 sec
    epoch  200,loss 0.027, time 37.5 sec
    epoch  250,loss 0.026, time 37.8 sec
    epoch  300,loss 0.025, time 37.3 sec
    

    测试

    def translate_ch7(model, src_sentence, src_vocab, tgt_vocab, max_len, device):
        src_tokens = src_vocab[src_sentence.lower().split(' ')]
        src_len = len(src_tokens)
        if src_len < max_len:
            src_tokens += [src_vocab.pad] * (max_len - src_len)
        enc_X = torch.tensor(src_tokens, device=device)
        enc_valid_length = torch.tensor([src_len], device=device)
        # use expand_dim to add the batch_size dimension.
        enc_outputs = model.encoder(enc_X.unsqueeze(dim=0), enc_valid_length)
        dec_state = model.decoder.init_state(enc_outputs, enc_valid_length)
        dec_X = torch.tensor([tgt_vocab.bos], device=device).unsqueeze(dim=0)
        predict_tokens = []
        for _ in range(max_len):
            Y, dec_state = model.decoder(dec_X, dec_state)
            # The token with highest score is used as the next time step input.
            dec_X = Y.argmax(dim=2)
            py = dec_X.squeeze(dim=0).int().item()
            if py == tgt_vocab.eos:
                break
            predict_tokens.append(py)
        return ' '.join(tgt_vocab.to_tokens(predict_tokens))
    
    for sentence in ['Go .', 'Wow !', "I'm OK .", 'I won !']:
        print(sentence + ' => ' + translate_ch7(
            model, sentence, src_vocab, tgt_vocab, max_len, ctx))
    
    Go . => va !
    Wow ! => <unk> !
    I'm OK . => ça va .
    I won ! => j'ai gagné !
    

    Beam Search

    简单greedy search:

    Image Name

    维特比算法:选择整体分数最高的句子(搜索空间太大)
    集束搜索:

    Image Name

    
    
  • 相关阅读:
    京东RPA:以企业数字化转型为驱动的机器人流程自动化解决方案专家
    运维大规模ES集群的思考和实践
    潘建伟团队再登Nature:建成全球首个集成量子通信网,全长4600公里
    数智化浪潮之中,传统企业如何抓住转型机遇?
    “持证”就能上岗 京东绿色内推招聘通道开启
    IoT爆发前夕,企业架构要面对哪些变革?
    如何使用ClickHouse实现时序数据管理和挖掘?
    图灵测试已过时,AI 需要新基准测试;别了Flash,Adobe播放器正式停运
    送你一份迷你书,全面了解如何做好大促技术备战
    Django 动态修改库名
  • 原文地址:https://www.cnblogs.com/supercodeing/p/12332775.html
Copyright © 2020-2023  润新知