前段时间准备执业医、师兄师姐答辩拍照、找实习。博客又落下了。继续继续ing~
紧接上一节SVM,来讲SMO,SMO为SVM最难啃的地方了吧,看到一大推公式。
我本着省去最繁琐的公式推导,给大家尽可能用人话讲清SMO的道理。
首先,上一节,我们得到最后的优化目标:
$underset{a}{min}=frac{1}{2}sum sum a_{i}a_{j}y_{i}y_{j}mathbf{K}(x_{i},x_{j})-sum a_{i}$
$s.t sum a_{i}y_{i}=0$
$0leqslant alpha _{i}leqslant C$
现在就补了这个坑。
SMO只一次优化两个未知参数$alpha _{1}$ ,$alpha _{2}$,将其他$alpha _{i>2}$共N-2个参数固定,将原始求解N个参数二次规划问题分解成很多个子二次规划问题分别求解,每个子问题只需要求解2个参数,方法类似于坐标上升。
首先根据约束条件$ sum a_{i}y_{i}=0$,固定$alpha _{1}$ ,$alpha _{2}$,其他参数当成常数。
有
(i和j分别取1,2,但是核函数里只有j可动,i已知,不可动)(0)
根据约束条件有$alpha _{1}y_{1}+ alpha _{2}y_{2}=-sum _{j=3}^{N}y_{j}=zeta $(1)
由(1)得
(等式两边同乘以y1,且$y_{i}^{2}=1$)(2)
且假设我们上一轮迭代得到$alpha _{1}^{old}$,$alpha _{2}^{old}$,以及下轮迭代得到的$alpha _{1}^{new}$,$alpha _{1}^{new}$
定义一个函数,为了后面简化公式(类似于损失函数,把超平面g(x)当做预测值,yi当做真实值)
(3)
令
(同样为了简化公式)(相当于超平面g(x)去掉$alpha _{1}$ ,$alpha _{2}$的部分)(4)
准备工作做完了,我说的简化公式计算就在这。(假设先求α2,由公式2可求得α1)将公式2,3,4带入公式0中,有
得到$alpha _{2}^{new,unclipped}$
tips
到这,大家有疑问了,这个什么未修剪的$alpha _{2}$什么鬼?
其实就是不加约束条件的下,直接求出来的 $alpha _{2}$嘛。
下面加上约束条件。
根据约束条件可得公式1和$0leqslant alpha _{i}leqslant C$
大家可以手动设定$alpha _{1}y_{1}+ alpha _{2}y_{2}=-sum _{j=3}^{N}y_{j}=zeta $(1)等于比如3,C=5,y1≠y2
下图是博主本人手算的,对于理解SMO原文中图a很有帮助
(a)
当为上图左图,有
当为上图右图,有
最后有$alpha _{2}^{new,unclipped}$和$alpha _{2}^{new}$的关系为
到此,我们再总结一下,把优化目标里的a1,a2看最未知,其他a都已知
通过对优化目标的求导,化简,变形等,求出$alpha _{2}^{new,unclipped}$
再根据约束条件,得到$alpha _{2}^{new,unclipped}$和$alpha _{2}^{new}$的关系,即得到了$alpha _{2}^{new}$
再根据公式1,得到$alpha _{1}^{new}$。
参考:
https://www.cnblogs.com/pinard/p/6111471.html
https://blog.csdn.net/luoshixian099/article/details/51227754