• 朴素贝叶斯应用:垃圾邮件分类


    import nltk
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    def preprocessing(text):
        tokens=[word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]
        stops=stopwords.words('english')
        tokens=[token for token in tokens if token not in stops]
        
        tokens=[token.lower() for token in tokens if len(tokens)>=3]
        lmtzr=WordNetLemmatizer()
        tokens=[lmtzr.lemmatize(token) for token in tokens]
        preprocessed_text=' '.join(tokens)
        return preprocessed_text
    

      

    import csv
    file_path=r'F:duymaisms.txt'
    sms=open(file_path,'r',encoding='utf-8')
    sms_data=[]
    sms_label=[]
    csv_reader=csv.reader(sms,delimiter='	')
    
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(preprocessing(line[1]))
    sms.close()
    

      

    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
    print(len(sms_data),len(x_train),len(x_test))
    

      

    # 将其向量化
    from sklearn.feature_extraction.text import TfidfVectorizer
    vectorizer=TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',strip_accents='unicode')#,,norm='12'
    X_train=vectorizer.fit_transform(x_train)
    X_test=vectorizer.transform(x_test)
    

      

    # 朴素贝叶斯分类器
    from sklearn.naive_bayes import MultinomialNB
    clf=MultinomialNB().fit(X_train,y_train)
    y_nb_pred=clf.predict(X_test)
    

      

    # 分类结果显示
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import classification_report
    
    print(y_nb_pred.shape,y_nb_pred)
    print('nb_confusion_matrix:')
    cm=confusion_matrix(y_test,y_nb_pred)
    print(cm)
    print('nb_classification_report')
    cr=classification_report(y_test,y_nb_pred)
    print(cr)
    

      

    feature_names=vectorizer.get_feature_names()
    coefs=clf.coef_
    intercept=clf.intercept_
    coefs_with_fns=sorted(zip(coefs[0],feature_names))
    
    n=10
    top=zip(coefs_with_fns[:n],coefs_with_fns[:-(n+1):-1])
    for (coef_1,fn_1),(coef_2,fn_2) in top:
        print('	%.4f	%-15s		%.4f	%-15s'%(coef_1,fn_1,coef_2,fn_2))
    

      

  • 相关阅读:
    浅谈 iOS 事件的传递和响应过程
    iOS 之渐变颜色
    系统enum的一些样式
    Storyboard操作的2个小技巧
    iOS 动画初步
    iOS之Runtime初应用
    Block使有注意点
    使用ios系统自带分享
    IOS原生地图与高德地图
    反向传值实例
  • 原文地址:https://www.cnblogs.com/sunyubin/p/10057597.html
Copyright © 2020-2023  润新知