• 监督学习-神经网络学习及编程作业


    一、一组神经元

    θ是模型权重(模型的参数)。

     

    二、模型展示

    三、多元分类

    四、编程作业(多元分类)

    1.lrCostFunction.m 

    在这部分是对上节作业的for循环进行矢量化,在上节作业中已经矢量化了。从代码中可以看出用到了costfunction函数,所以把该函数放到同一文件夹中。

    function [J, grad] = lrCostFunction(theta, X, y, lambda)
    %LRCOSTFUNCTION Compute cost and gradient for logistic regression with 
    %regularization
    %   J = LRCOSTFUNCTION(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Hint: The computation of the cost function and gradients can be
    %       efficiently vectorized. For example, consider the computation
    %
    %           sigmoid(X * theta)
    %
    %       Each row of the resulting matrix will contain the value of the
    %       prediction for that example. You can make use of this to vectorize
    %       the cost function and gradient computations. 
    %
    % Hint: When computing the gradient of the regularized cost function, 
    %       there're many possible vectorized solutions, but one solution
    %       looks like:
    %           grad = (unregularized gradient for logistic regression)
    %           temp = theta; 
    %           temp(1) = 0;   % because we don't add anything for j = 0  
    %           grad = grad + YOUR_CODE_HERE (using the temp variable)
    %
    h = sigmoid(X*theta);
    [J, grad] = costFunction(theta,X,y);
    J = J + lambda*(theta'*theta-theta(1).^2)/2/m;
    
    grad = X'*(h-y)/m+lambda*theta/m;    
    temp =(X(:,1))'*(h-y)/m;
    grad(1,1) = temp;
    % =============================================================
    
    grad = grad(:);
    
    end
    

    2.oneVsAll.m

    一对多分类问题中,找到每组的 θ 值(用高级优化fminunc),利用for循环,组成模型权重。

    function [all_theta] = oneVsAll(X, y, num_labels, lambda)
    %ONEVSALL trains multiple logistic regression classifiers and returns all
    %the classifiers in a matrix all_theta, where the i-th row of all_theta 
    %corresponds to the classifier for label i
    %   [all_theta] = ONEVSALL(X, y, num_labels, lambda) trains num_labels
    %   logistic regression classifiers and returns each of these classifiers
    %   in a matrix all_theta, where the i-th row of all_theta corresponds 
    %   to the classifier for label i
    
    % Some useful variables
    m = size(X, 1);
    n = size(X, 2);
    
    % You need to return the following variables correctly 
    all_theta = zeros(num_labels, n + 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: You should complete the following code to train num_labels
    %               logistic regression classifiers with regularization
    %               parameter lambda. 
    %
    % Hint: theta(:) will return a column vector.
    %
    % Hint: You can use y == c to obtain a vector of 1's and 0's that tell you
    %       whether the ground truth is true/false for this class.
    %
    % Note: For this assignment, we recommend using fmincg to optimize the cost
    %       function. It is okay to use a for-loop (for c = 1:num_labels) to
    %       loop over the different classes.
    %
    %       fmincg works similarly to fminunc, but is more efficient when we
    %       are dealing with large number of parameters.
    %
    % Example Code for fmincg:
    %
    %     % Set Initial theta
    %     initial_theta = zeros(n + 1, 1);
    %     
    %     % Set options for fminunc
    %     options = optimset('GradObj', 'on', 'MaxIter', 50);
    % 
    %     % Run fmincg to obtain the optimal theta
    %     % This function will return theta and the cost 
    %     [theta] = ...
    %         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)), ...
    %                 initial_theta, options);
    %
    for c = 1:num_labels
        %对于每类都寻找最优的
        options = optimset('GradObj','on','MaxIter',50);
        initial_theta = zeros(n+1,1);
        [theta] = ...
         fmincg (@(t)(lrCostFunction(t, X, (y == c), lambda)),initial_theta, options);
        all_theta(c,:) = theta';
    
    % =========================================================================
    
    
    end
    

    3.predictOneVsAll.m

    预测函数。即从输入层,利用模型权重得到输出层h。

    h是5000x10的矩阵,每行代表输入值在每类的相似度,取每行的最大值即属于这类的可能性最大,利用max函数得到最大的相似度值及其所在的列数(分类类别数)。

    function p = predictOneVsAll(all_theta, X)
    %PREDICT Predict the label for a trained one-vs-all classifier. The labels 
    %are in the range 1..K, where K = size(all_theta, 1). 
    %  p = PREDICTONEVSALL(all_theta, X) will return a vector of predictions
    %  for each example in the matrix X. Note that X contains the examples in
    %  rows. all_theta is a matrix where the i-th row is a trained logistic
    %  regression theta vector for the i-th class. You should set p to a vector
    %  of values from 1..K (e.g., p = [1; 3; 1; 2] predicts classes 1, 3, 1, 2
    %  for 4 examples) 
    
    m = size(X, 1);
    num_labels = size(all_theta, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % Add ones to the X data matrix
    X = [ones(m, 1) X];
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned logistic regression parameters (one-vs-all).
    %               You should set p to a vector of predictions (from 1 to
    %               num_labels).
    %
    % Hint: This code can be done all vectorized using the max function.
    %       In particular, the max function can also return the index of the 
    %       max element, for more information see 'help max'. If your examples 
    %       are in rows, then, you can use max(A, [], 2) to obtain the max 
    %       for each row.
    %       
    h = sigmoid(X*all_theta')
    [Z,p] = max(h,[],2);
    
    % =========================================================================
    
    
    end
    

    五、编程作业(神经网络)

     1.predict.m

    这部分的目的在于理解神经网络学习。

    function p = predict(Theta1, Theta2, X)
    %PREDICT Predict the label of an input given a trained neural network
    %   p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given the
    %   trained weights of a neural network (Theta1, Theta2)
    
    % Useful values
    m = size(X, 1);
    num_labels = size(Theta2, 1);
    
    % You need to return the following variables correctly 
    p = zeros(size(X, 1), 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Complete the following code to make predictions using
    %               your learned neural network. You should set p to a 
    %               vector containing labels between 1 to num_labels.
    %
    % Hint: The max function might come in useful. In particular, the max
    %       function can also return the index of the max element, for more
    %       information see 'help max'. If your examples are in rows, then, you
    %       can use max(A, [], 2) to obtain the max for each row.
    %
    %给输入加一个偏置位
    a1 = [ones(m,1) X];
    %第一个隐藏层A1
    z2 = a1*Theta1';
    %隐藏层的值,加一个偏置位
    a2 = sigmoid(z2);
    a2 = [ones(m,1) a2];
    %输出层z3
    z3 = a2*Theta2';
    a3 = sigmoid(z3);
    
    [Z,p] = max(a3,[],2);
    % =========================================================================
    
    
    end
    

      

  • 相关阅读:
    解释器模式
    命令模式
    责任链模式
    代理模式
    享元模式
    外观模式
    装饰器模式
    组合模式
    过滤器模式
    js广告浮动
  • 原文地址:https://www.cnblogs.com/sunxiaoshu/p/10608817.html
Copyright © 2020-2023  润新知