构造函数如果采用以下这种方式声明,并不能为Point类生成一个名name为‘y1’的属性property。
Object.assign(Point.prototype, { constructor(x,y){ this.x=x; this.y1=y; }, fun1(){} });
完整demo如下:macOs+chrome(启动devtools调试,option+command+i)
// let methodName = 'getSum' class Point{ constructor(x,y){ this.x=x; this.y=y; } add(a, b){ return a+b; } get(){ return this.x+this.y; } get1(){ return this.y1+this.y } } Object.assign(Point.prototype, { constructor(x,y){ this.x=x; this.y1=y; }, fun1(){} }); Point.prototype.fun2 = function(){} var p = new Point(1,2); console.log(Object.keys(Point.prototype)) //只能得到通过Point.prototype定义的方法名称。 console.log(Object.getOwnPropertyNames(Point.prototype)) //得到所有的方法名称 console.log(Object.getOwnPropertyNames(p)) //只能得到this.XXX定义的属性名称 console.log(Object.getOwnPropertyNames(new Point(3,4))) //同上 console.log(p.hasOwnProperty("x")) console.log(p.hasOwnProperty("y")) console.log(p.hasOwnProperty("y1")) console.log(p.get()) console.log(p.get1())
console.log(p.hasOwnProperty("get")) //false
console.log(p.__proto__.hasOwnProperty('get')) // true 上面代码中,x
和y
都是实例对象point
自身的属性(因为定义在this
变量上),所以hasOwnProperty
方法返回true
,而toString
是原型对象的属性(因为定义在Point
类上),所以hasOwnProperty
方法返回false
。这些都与 ES5 的行为保持一致。
console.log(Point.prototype.hasOwnProperty('get')) // true, 后面这种写法错误p.prototype.hasOwnProperty("get")
结果:
(2) ['fun1', 'fun2'] (6) ['constructor', 'add', 'get', 'get1', 'fun1', 'fun2'] (2) ['x', 'y'] (2) ['x', 'y'] true true false 3 NaN undefined
false
true
true
原文如下:点击查看原文
Class 的基本语法
Class 的基本语法
简介
JavaScript 语言中,生成实例对象的传统方法是通过构造函数。下面是一个例子。
functionPoint(x, y) {
this.x = x;
this.y = y;
}
Point.prototype.toString = function () {
return '(' + this.x + ', ' + this.y + ')';
};
var p = new Point(1, 2);
上面这种写法跟传统的面向对象语言(比如 C++ 和 Java)差异很大,很容易让新学习这门语言的程序员感到困惑。
ES6 提供了更接近传统语言的写法,引入了 Class(类)这个概念,作为对象的模板。通过class
关键字,可以定义类。
基本上,ES6 的class
可以看作只是一个语法糖,它的绝大部分功能,ES5 都可以做到,新的class
写法只是让对象原型的写法更加清晰、更像面向对象编程的语法而已。上面的代码用 ES6 的class
改写,就是下面这样。
//定义类
classPoint{
constructor(x, y) {
this.x = x;
this.y = y;
}
toString() {
return '(' + this.x + ', ' + this.y + ')';
}
}
上面代码定义了一个“类”,可以看到里面有一个constructor
方法,这就是构造方法,而this
关键字则代表实例对象。也就是说,ES5 的构造函数Point
,对应 ES6 的Point
类的构造方法。
Point
类除了构造方法,还定义了一个toString
方法。注意,定义“类”的方法的时候,前面不需要加上function
这个关键字,直接把函数定义放进去了就可以了。另外,方法之间不需要逗号分隔,加了会报错。
ES6 的类,完全可以看作构造函数的另一种写法。
class Point {
// ...
}
typeof Point // "function"
Point === Point.prototype.constructor // true
上面代码表明,类的数据类型就是函数,类本身就指向构造函数。
使用的时候,也是直接对类使用new
命令,跟构造函数的用法完全一致。
classBar{
doStuff() {
console.log('stuff');
}
}
var b = new Bar();
b.doStuff() // "stuff"
构造函数的prototype
属性,在 ES6 的“类”上面继续存在。事实上,类的所有方法都定义在类的prototype
属性上面。
classPoint{
constructor() {
// ...
}
toString() {
// ...
}
toValue() {
// ...
}
}
// 等同于
Point.prototype = {
constructor() {},
toString() {},
toValue() {},
};
在类的实例上面调用方法,其实就是调用原型上的方法。
class B {}
let b = new B();
b.constructor === B.prototype.constructor // true
上面代码中,b
是B
类的实例,它的constructor
方法就是B
类原型的constructor
方法。
由于类的方法都定义在prototype
对象上面,所以类的新方法可以添加在prototype
对象上面。Object.assign
方法可以很方便地一次向类添加多个方法。
classPoint{
constructor(){
// ...
}
}
Object.assign(Point.prototype, {
toString(){},
toValue(){}
});
prototype
对象的constructor
属性,直接指向“类”的本身,这与 ES5 的行为是一致的。
Point.prototype.constructor === Point // true
另外,类的内部所有定义的方法,都是不可枚举的(non-enumerable)。
classPoint{
constructor(x, y) {
// ...
}
toString() {
// ...
}
}
Object.keys(Point.prototype)
// []
Object.getOwnPropertyNames(Point.prototype)
// ["constructor","toString"]
上面代码中,toString
方法是Point
类内部定义的方法,它是不可枚举的。这一点与 ES5 的行为不一致。
var Point = function (x, y) {
// ...
};
Point.prototype.toString = function() {
// ...
};
Object.keys(Point.prototype)
// ["toString"]
Object.getOwnPropertyNames(Point.prototype)
// ["constructor","toString"]
上面代码采用 ES5 的写法,toString
方法就是可枚举的。
类的属性名,可以采用表达式。
let methodName = 'getArea';
class Square {
constructor(length) {
// ...
}
[methodName]() {
// ...
}
}
上面代码中,Square
类的方法名getArea
,是从表达式得到的。
严格模式
类和模块的内部,默认就是严格模式,所以不需要使用use strict
指定运行模式。只要你的代码写在类或模块之中,就只有严格模式可用。
考虑到未来所有的代码,其实都是运行在模块之中,所以 ES6 实际上把整个语言升级到了严格模式。
constructor 方法
constructor
方法是类的默认方法,通过new
命令生成对象实例时,自动调用该方法。一个类必须有constructor
方法,如果没有显式定义,一个空的constructor
方法会被默认添加。
classPoint{
}
// 等同于
classPoint{
constructor() {}
}
上面代码中,定义了一个空的类Point
,JavaScript 引擎会自动为它添加一个空的constructor
方法。
constructor
方法默认返回实例对象(即this
),完全可以指定返回另外一个对象。
classFoo{
constructor() {
return Object.create(null);
}
}
new Foo() instanceof Foo
// false
上面代码中,constructor
函数返回一个全新的对象,结果导致实例对象不是Foo
类的实例。
类必须使用new
调用,否则会报错。这是它跟普通构造函数的一个主要区别,后者不用new
也可以执行。
classFoo{
constructor() {
return Object.create(null);
}
}
Foo()
// TypeError: Class constructor Foo cannot be invoked without 'new'
类的实例对象
生成类的实例对象的写法,与 ES5 完全一样,也是使用new
命令。前面说过,如果忘记加上new
,像函数那样调用Class
,将会报错。
class Point {
// ...
}
// 报错
var point = Point(2, 3);
// 正确
var point = new Point(2, 3);
与 ES5 一样,实例的属性除非显式定义在其本身(即定义在this
对象上),否则都是定义在原型上(即定义在class
上)。
//定义类
classPoint{
constructor(x, y) {
this.x = x;
this.y = y;
}
toString() {
return '(' + this.x + ', ' + this.y + ')';
}
}
var point = new Point(2, 3);
point.toString() // (2, 3)
point.hasOwnProperty('x') // true
point.hasOwnProperty('y') // true
point.hasOwnProperty('toString') // false
point.__proto__.hasOwnProperty('toString') // true
上面代码中,x
和y
都是实例对象point
自身的属性(因为定义在this
变量上),所以hasOwnProperty
方法返回true
,而toString
是原型对象的属性(因为定义在Point
类上),所以hasOwnProperty
方法返回false
。这些都与 ES5 的行为保持一致。
与 ES5 一样,类的所有实例共享一个原型对象。
var p1 = new Point(2,3);
var p2 = new Point(3,2);
p1.__proto__ === p2.__proto__
//true
上面代码中,p1
和p2
都是Point
的实例,它们的原型都是Point.prototype
,所以__proto__
属性是相等的。
这也意味着,可以通过实例的__proto__
属性为“类”添加方法。
__proto__
并不是语言本身的特性,这是各大厂商具体实现时添加的私有属性,虽然目前很多现代浏览器的 JS 引擎中都提供了这个私有属性,但依旧不建议在生产中使用该属性,避免对环境产生依赖。生产环境中,我们可以使用Object.getPrototypeOf
方法来获取实例对象的原型,然后再来为原型添加方法/属性。
var p1 = new Point(2,3);
var p2 = new Point(3,2);
p1.__proto__.printName = function () { return 'Oops' };
p1.printName() // "Oops"
p2.printName() // "Oops"
var p3 = new Point(4,2);
p3.printName() // "Oops"
上面代码在p1
的原型上添加了一个printName
方法,由于p1
的原型就是p2
的原型,因此p2
也可以调用这个方法。而且,此后新建的实例p3
也可以调用这个方法。这意味着,使用实例的__proto__
属性改写原型,必须相当谨慎,不推荐使用,因为这会改变“类”的原始定义,影响到所有实例。
Class 表达式
与函数一样,类也可以使用表达式的形式定义。
const MyClass = classMe{
getClassName() {
return Me.name;
}
};
上面代码使用表达式定义了一个类。需要注意的是,这个类的名字是MyClass
而不是Me
,Me
只在 Class 的内部代码可用,指代当前类。
let inst = new MyClass();
inst.getClassName() // Me
Me.name // ReferenceError: Me is not defined
上面代码表示,Me
只在 Class 内部有定义。
如果类的内部没用到的话,可以省略Me
,也就是可以写成下面的形式。
const MyClass = class { /* ... */ };
采用 Class 表达式,可以写出立即执行的 Class。
let person = new class{
constructor(name) {
this.name = name;
}
sayName() {
console.log(this.name);
}
}('张三');
person.sayName(); // "张三"
上面代码中,person
是一个立即执行的类的实例。
不存在变量提升
类不存在变量提升(hoist),这一点与 ES5 完全不同。
new Foo(); // ReferenceError
classFoo{}
上面代码中,Foo
类使用在前,定义在后,这样会报错,因为 ES6 不会把类的声明提升到代码头部。这种规定的原因与下文要提到的继承有关,必须保证子类在父类之后定义。
{
let Foo = class{};
classBarextendsFoo{
}
}
上面的代码不会报错,因为Bar
继承Foo
的时候,Foo
已经有定义了。但是,如果存在class
的提升,上面代码就会报错,因为class
会被提升到代码头部,而let
命令是不提升的,所以导致Bar
继承Foo
的时候,Foo
还没有定义。
私有方法
私有方法是常见需求,但 ES6 不提供,只能通过变通方法模拟实现。
一种做法是在命名上加以区别。
classWidget{
// 公有方法
foo (baz) {
this._bar(baz);
}
// 私有方法
_bar(baz) {
return this.snaf = baz;
}
// ...
}
上面代码中,_bar
方法前面的下划线,表示这是一个只限于内部使用的私有方法。但是,这种命名是不保险的,在类的外部,还是可以调用到这个方法。
另一种方法就是索性将私有方法移出模块,因为模块内部的所有方法都是对外可见的。
classWidget{
foo (baz) {
bar.call(this, baz);
}
// ...
}
functionbar(baz) {
return this.snaf = baz;
}
上面代码中,foo
是公有方法,内部调用了bar.call(this, baz)
。这使得bar
实际上成为了当前模块的私有方法。
还有一种方法是利用Symbol
值的唯一性,将私有方法的名字命名为一个Symbol
值。
const bar = Symbol('bar');
const snaf = Symbol('snaf');
export default classmyClass{
// 公有方法
foo(baz) {
this[bar](baz);
}
// 私有方法
[bar](baz) {
return this[snaf] = baz;
}
// ...
};
上面代码中,bar
和snaf
都是Symbol
值,导致第三方无法获取到它们,因此达到了私有方法和私有属性的效果。
私有属性
与私有方法一样,ES6 不支持私有属性。目前,有一个提案,为class
加了私有属性。方法是在属性名之前,使用#
表示。
class Point {
#x;
constructor(x = 0) {
#x = +x; // 写成 this.#x 亦可
}
get x() { return #x }
set x(value) { #x = +value }
}
上面代码中,#x
就表示私有属性x
,在Point
类之外是读取不到这个属性的。还可以看到,私有属性与实例的属性是可以同名的(比如,#x
与get x()
)。
私有属性可以指定初始值,在构造函数执行时进行初始化。
classPoint{
#x = 0;
constructor() {
#x; // 0
}
}
之所以要引入一个新的前缀#
表示私有属性,而没有采用private
关键字,是因为 JavaScript 是一门动态语言,使用独立的符号似乎是唯一的可靠方法,能够准确地区分一种属性是否为私有属性。另外,Ruby 语言使用@
表示私有属性,ES6 没有用这个符号而使用#
,是因为@
已经被留给了 Decorator。
该提案只规定了私有属性的写法。但是,很自然地,它也可以用来写私有方法。
class Foo {
#a;
#b;
#sum() { return #a + #b; }
printSum() { console.log(#sum()); }
constructor(a, b) { #a = a; #b = b; }
}
this 的指向
类的方法内部如果含有this
,它默认指向类的实例。但是,必须非常小心,一旦单独使用该方法,很可能报错。
classLogger{
printName(name = 'there') {
this.print(`Hello ${name}`);
}
print(text) {
console.log(text);
}
}
const logger = new Logger();
const { printName } = logger;
printName(); // TypeError: Cannot read property 'print' of undefined
上面代码中,printName
方法中的this
,默认指向Logger
类的实例。但是,如果将这个方法提取出来单独使用,this
会指向该方法运行时所在的环境,因为找不到print
方法而导致报错。
一个比较简单的解决方法是,在构造方法中绑定this
,这样就不会找不到print
方法了。
classLogger{
constructor() {
this.printName = this.printName.bind(this);
}
// ...
}
另一种解决方法是使用箭头函数。
classLogger{
constructor() {
this.printName = (name = 'there') => {
this.print(`Hello ${name}`);
};
}
// ...
}
还有一种解决方法是使用Proxy
,获取方法的时候,自动绑定this
。
functionselfish (target) {
const cache = new WeakMap();
const handler = {
get (target, key) {
const value = Reflect.get(target, key);
if (typeof value !== 'function') {
return value;
}
if (!cache.has(value)) {
cache.set(value, value.bind(target));
}
return cache.get(value);
}
};
const proxy = new Proxy(target, handler);
return proxy;
}
const logger = selfish(new Logger());
name 属性
由于本质上,ES6 的类只是 ES5 的构造函数的一层包装,所以函数的许多特性都被Class
继承,包括name
属性。
classPoint{}
Point.name // "Point"
name
属性总是返回紧跟在class
关键字后面的类名。
Class 的取值函数(getter)和存值函数(setter)
与 ES5 一样,在“类”的内部可以使用get
和set
关键字,对某个属性设置存值函数和取值函数,拦截该属性的存取行为。
classMyClass{
constructor() {
// ...
}
get prop() {
return 'getter';
}
set prop(value) {
console.log('setter: '+value);
}
}
let inst = new MyClass();
inst.prop = 123;
// setter: 123
inst.prop
// 'getter'
上面代码中,prop
属性有对应的存值函数和取值函数,因此赋值和读取行为都被自定义了。
存值函数和取值函数是设置在属性的 Descriptor 对象上的。
classCustomHTMLElement{
constructor(element) {
this.element = element;
}
get html() {
return this.element.innerHTML;
}
set html(value) {
this.element.innerHTML = value;
}
}
var descriptor = Object.getOwnPropertyDescriptor(
CustomHTMLElement.prototype, "html"
);
"get" in descriptor // true
"set" in descriptor // true
上面代码中,存值函数和取值函数是定义在html
属性的描述对象上面,这与 ES5 完全一致。
Class 的 Generator 方法
如果某个方法之前加上星号(*
),就表示该方法是一个 Generator 函数。
classFoo{
constructor(...args) {
this.args = args;
}
* [Symbol.iterator]() {
for (let arg of this.args) {
yield arg;
}
}
}
for (let x of new Foo('hello', 'world')) {
console.log(x);
}
// hello
// world
上面代码中,Foo
类的Symbol.iterator
方法前有一个星号,表示该方法是一个 Generator 函数。Symbol.iterator
方法返回一个Foo
类的默认遍历器,for...of
循环会自动调用这个遍历器。
Class 的静态方法
类相当于实例的原型,所有在类中定义的方法,都会被实例继承。如果在一个方法前,加上static
关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”。
class Foo {
static classMethod() {
return 'hello';
}
}
Foo.classMethod() // 'hello'
var foo = new Foo();
foo.classMethod()
// TypeError: foo.classMethod is not a function
上面代码中,Foo
类的classMethod
方法前有static
关键字,表明该方法是一个静态方法,可以直接在Foo
类上调用(Foo.classMethod()
),而不是在Foo
类的实例上调用。如果在实例上调用静态方法,会抛出一个错误,表示不存在该方法。
注意,如果静态方法包含this
关键字,这个this
指的是类,而不是实例。
class Foo {
static bar () {
this.baz();
}
static baz () {
console.log('hello');
}
baz () {
console.log('world');
}
}
Foo.bar() // hello
上面代码中,静态方法bar
调用了this.baz
,这里的this
指的是Foo
类,而不是Foo
的实例,等同于调用Foo.baz
。另外,从这个例子还可以看出,静态方法可以与非静态方法重名。
父类的静态方法,可以被子类继承。
classFoo{
static classMethod() {
return 'hello';
}
}
classBarextendsFoo{
}
Bar.classMethod() // 'hello'
上面代码中,父类Foo
有一个静态方法,子类Bar
可以调用这个方法。
静态方法也是可以从super
对象上调用的。
classFoo{
static classMethod() {
return 'hello';
}
}
classBarextendsFoo{
static classMethod() {
return super.classMethod() + ', too';
}
}
Bar.classMethod() // "hello, too"
Class 的静态属性和实例属性
静态属性指的是 Class 本身的属性,即Class.propName
,而不是定义在实例对象(this
)上的属性。
classFoo{
}
Foo.prop = 1;
Foo.prop // 1
上面的写法为Foo
类定义了一个静态属性prop
。
目前,只有这种写法可行,因为 ES6 明确规定,Class 内部只有静态方法,没有静态属性。
// 以下两种写法都无效
classFoo{
// 写法一
prop: 2
// 写法二
static prop: 2
}
Foo.prop // undefined
目前有一个静态属性的提案,对实例属性和静态属性都规定了新的写法。
(1)类的实例属性
类的实例属性可以用等式,写入类的定义之中。
classMyClass{
myProp = 42;
constructor() {
console.log(this.myProp); // 42
}
}
上面代码中,myProp
就是MyClass
的实例属性。在MyClass
的实例上,可以读取这个属性。
以前,我们定义实例属性,只能写在类的constructor
方法里面。
classReactCounterextendsReact.Component{
constructor(props) {
super(props);
this.state = {
count: 0
};
}
}
上面代码中,构造方法constructor
里面,定义了this.state
属性。
有了新的写法以后,可以不在constructor
方法里面定义。
classReactCounterextendsReact.Component{
state = {
count: 0
};
}
这种写法比以前更清晰。
为了可读性的目的,对于那些在constructor
里面已经定义的实例属性,新写法允许直接列出。
classReactCounterextendsReact.Component{
state;
constructor(props) {
super(props);
this.state = {
count: 0
};
}
}
(2)类的静态属性
类的静态属性只要在上面的实例属性写法前面,加上static
关键字就可以了。
classMyClass{
static myStaticProp = 42;
constructor() {
console.log(MyClass.myStaticProp); // 42
}
}
同样的,这个新写法大大方便了静态属性的表达。
// 老写法
classFoo{
// ...
}
Foo.prop = 1;
// 新写法
classFoo{
static prop = 1;
}
上面代码中,老写法的静态属性定义在类的外部。整个类生成以后,再生成静态属性。这样让人很容易忽略这个静态属性,也不符合相关代码应该放在一起的代码组织原则。另外,新写法是显式声明(declarative),而不是赋值处理,语义更好。
new.target 属性
new
是从构造函数生成实例对象的命令。ES6 为new
命令引入了一个new.target
属性,该属性一般用在构造函数之中,返回new
命令作用于的那个构造函数。如果构造函数不是通过new
命令调用的,new.target
会返回undefined
,因此这个属性可以用来确定构造函数是怎么调用的。
functionPerson(name) {
if (new.target !== undefined) {
this.name = name;
} else {
throw new Error('必须使用 new 命令生成实例');
}
}
// 另一种写法
functionPerson(name) {
if (new.target === Person) {
this.name = name;
} else {
throw new Error('必须使用 new 命令生成实例');
}
}
var person = new Person('张三'); // 正确
var notAPerson = Person.call(person, '张三'); // 报错
上面代码确保构造函数只能通过new
命令调用。
Class 内部调用new.target
,返回当前 Class。
classRectangle{
constructor(length, width) {
console.log(new.target === Rectangle);
this.length = length;
this.width = width;
}
}
var obj = new Rectangle(3, 4); // 输出 true
需要注意的是,子类继承父类时,new.target
会返回子类。
classRectangle{
constructor(length, width) {
console.log(new.target === Rectangle);
// ...
}
}
classSquareextendsRectangle{
constructor(length) {
super(length, length);
}
}
var obj = new Square(3); // 输出 false
上面代码中,new.target
会返回子类。
利用这个特点,可以写出不能独立使用、必须继承后才能使用的类。
classShape{
constructor() {
if (new.target === Shape) {
throw new Error('本类不能实例化');
}
}
}
classRectangleextendsShape{
constructor(length, width) {
super();
// ...
}
}
var x = new Shape(); // 报错
var y = new Rectangle(3, 4); // 正确
上面代码中,Shape
类不能被实例化,只能用于继承。
注意,在函数外部,使用new.target
会报错。