• np.random的随机数函数


    np.random的随机数函数(1)

    函数 说明
    rand(d0,d1,..,dn) 根据d0‐dn创建随机数数组,浮点数, [0,1),均匀分布
    randn(d0,d1,..,dn) 根据d0‐dn创建随机数数组,标准正态分布
    randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low, high)
    seed(s) 随机数种子, s是给定的种子值

    np.random.rand

    import numpy as np
    
    a = np.random.rand(3, 4, 5)
    
    a
    Out[3]: 
    array([[[0.28576737, 0.96566496, 0.59411491, 0.47805199, 0.97454449],
            [0.15970049, 0.35184063, 0.66815684, 0.13571458, 0.41168113],
            [0.66737322, 0.91583297, 0.68033204, 0.49083857, 0.33549182],
            [0.52797439, 0.23526146, 0.39731129, 0.26576975, 0.26846021]],
    
           [[0.46860445, 0.84988491, 0.92614786, 0.76410349, 0.00283208],
            [0.88036955, 0.01402271, 0.59294569, 0.14080713, 0.72076521],
            [0.0537956 , 0.08118672, 0.59281986, 0.60544876, 0.77931621],
            [0.41678215, 0.24321042, 0.25167563, 0.94738625, 0.86642919]],
    
           [[0.36137271, 0.21672667, 0.85449629, 0.51065516, 0.16990425],
            [0.97507815, 0.78870518, 0.36101021, 0.56538782, 0.56392004],
            [0.93777677, 0.73199966, 0.97342172, 0.42147127, 0.73654324],
            [0.83139234, 0.00221262, 0.51822612, 0.60964223, 0.83029954]]])
    

    np.random.randn

    b = np.random.randn(3, 4, 5)
    
    b
    Out[5]: 
    array([[[ 0.09170952, -0.36083675, -0.18189783, -0.52370155,
             -0.61183783],
            [ 1.05285606, -0.82944771, -0.93438396,  0.32229904,
             -0.85316565],
            [ 1.41103666, -0.32534111, -0.02202953,  1.02101228,
              1.59756695],
            [-0.33896372,  0.42234042,  0.14297587, -0.70335248,
              0.29436318]],
    
           [[ 0.73454216,  0.35412624, -1.76199508,  1.79502353,
              1.05694614],
            [-0.42403323, -0.36551581,  0.54033378, -0.04914723,
              1.15092556],
            [ 0.48814148,  1.09265266,  0.65504441, -1.04280834,
              0.70437122],
            [ 2.92946803, -1.73066859, -0.30184912,  1.04918753,
             -1.58460681]],
    
           [[ 1.24923498, -0.65467868, -1.30427044,  1.49415265,
              0.87520623],
            [-0.26425316, -0.89014489,  0.98409579,  1.13291179,
             -0.91343016],
            [-0.71570644,  0.81026219, -0.00906133,  0.90806035,
             -0.914998  ],
            [ 0.22115875, -0.81820313,  0.66359573, -0.1490853 ,
              0.75663096]]])
    

    np.random.randint

    c = np.random.randint(100, 200, (3, 4))
    
    c
    Out[9]: 
    array([[104, 140, 161, 193],
           [134, 147, 126, 120],
           [117, 141, 162, 137]])
    

    np.random.seed

    随机种子生成器,使下一次生成的随机数为由种子数决定的“特定”的随机数,如果seed中参数为空,则生成的随机数“完全”随机。参考文档

    np.random.seed(10)
    
    np.random.randint(100, 200, (3 ,4))
    Out[11]: 
    array([[109, 115, 164, 128],
           [189, 193, 129, 108],
           [173, 100, 140, 136]])
    
    np.random.seed(10)
    
    np.random.randint(100 ,200, (3, 4))
    Out[13]: 
    array([[109, 115, 164, 128],
           [189, 193, 129, 108],
           [173, 100, 140, 136]])
    

    np.random的随机数函数(2)

    函数 说明
    shuffle(a) 根据数组a的第1轴(也就是最外层的维度)进行随排列,改变数组x
    permutation(a) 根据数组a的第1轴产生一个新的乱序数组,不改变数组x
    choice(a[,size,replace,p]) 从一维数组a中以概率p抽取元素,形成size形状新数组replace表示是否可以重用元素,默认为False

    np.random.shuffle

    a = np.random.randint(100, 200, (3, 4))
    
    a
    Out[15]: 
    array([[116, 111, 154, 188],
           [162, 133, 172, 178],
           [149, 151, 154, 177]])
    
    np.random.shuffle(a)
    
    a
    Out[17]: 
    array([[116, 111, 154, 188],
           [149, 151, 154, 177],
           [162, 133, 172, 178]])
    
    np.random.shuffle(a)
    
    a
    Out[19]: 
    array([[162, 133, 172, 178],
           [116, 111, 154, 188],
           [149, 151, 154, 177]])
    

    可以看到,a发生了变化,轴。

    np.random.permutation

    b = np.random.randint(100, 200, (3, 4))
    
    b
    Out[21]: 
    array([[113, 192, 186, 130],
           [130, 189, 112, 165],
           [131, 157, 136, 127]])
    
    np.random.permutation(b)
    Out[22]: 
    array([[113, 192, 186, 130],
           [130, 189, 112, 165],
           [131, 157, 136, 127]])
    
    b
    Out[24]: 
    array([[113, 192, 186, 130],
           [130, 189, 112, 165],
           [131, 157, 136, 127]])
    

    可以看到,b没有发生改变。

    np.random.choice

    c = np.random.randint(100, 200, (8,))
    
    c
    Out[26]: array([123, 194, 111, 128, 174, 188, 109, 115])
    
    np.random.choice(c, (3, 2))
    Out[27]: 
    array([[111, 123],
           [109, 115],
           [123, 128]])#默认可以出现重复值
    
    np.random.choice(c, (3, 2), replace=False)
    Out[28]: 
    array([[188, 111],
           [123, 115],
           [174, 128]])#不允许出现重复值
    
    np.random.choice(c, (3, 2),p=c/np.sum(c))
    Out[29]: 
    array([[194, 188],
           [109, 111],
           [174, 109]])#指定每个值出现的概率
    

    np.random的随机数函数(3)

    函数 说明
    uniform(low,high,size) 产生具有均匀分布的数组,low起始值,high结束值,size形状
    normal(loc,scale,size) 产生具有正态分布的数组,loc均值,scale标准差,size形状
    poisson(lam,size) 产生具有泊松分布的数组,lam随机事件发生率,size形状
    u = np.random.uniform(0, 10, (3, 4))
    
    u
    Out[31]: 
    array([[9.83020867, 4.67403279, 8.75744495, 2.96068699],
           [1.31291053, 8.42817933, 6.59036304, 5.95439605],
           [4.36353698, 3.56250327, 5.87130925, 1.49471337]])
    
    n = np.random.normal(10, 5, (3, 4))
    
    n
    Out[33]: 
    array([[ 8.17771928,  4.17423265,  3.28465058, 17.2669643 ],
           [10.00584724,  9.94039808, 13.57941572,  4.07115727],
           [ 6.81836048,  6.94593078,  3.40304302,  7.19135792]])
    
    p = np.random.poisson(2.0, (3, 4))
    
    p
    Out[35]: 
    array([[0, 2, 2, 1],
           [2, 0, 1, 3],
           [4, 2, 0, 3]])
    
  • 相关阅读:
    Jemter---基础概念
    Jmeter---线程操作
    性能接口面试题
    Linux---网络命令
    测试所用链接地址
    Linux---压缩解压命令
    Linux----用户管理命令
    性能面试题
    Linux---帮助命令
    Linux--文件搜索命令
  • 原文地址:https://www.cnblogs.com/sunshinewang/p/8905761.html
Copyright © 2020-2023  润新知