• 信号量Semaphore实现原理


      Semaphore用于管理信号量,在并发编程中,可以控制返访问同步代码的线程数量。Semaphore在实例化时传入一个int值,也就是指明信号数量。主要方法有两个:acquire()和release()。acquire()用于请求信号,每调用一次,信号量便少一个。release()用于释放信号,调用一次信号量加一个。信号量用完以后,后续使用acquire()方法请求信号的线程便会加入阻塞队列挂起。本篇简单分析Semaphore的源码,说明其实现原理。

      Semaphore对于信号量的控制是基于AQS(AbstractQueuedSynchronizer)来做的。Semaphore有一个内部类Sync继承了AQS。而且Semaphore中还有两个内部类FairSync和NonfairSync继承Sync,也就是说Semaphore有公平锁和非公平锁之分。以下是Semaphore中内部类的结构:

        

      看一下Semaphore的两个构造函数:

    public Semaphore(int permits) {
            sync = new NonfairSync(permits);
        }
    public Semaphore(int permits, boolean fair) {
            sync = fair ? new FairSync(permits) : new NonfairSync(permits);
        }

      默认是非公平锁。两个构造方法都必须传int permits值。

      

      这个int值在实例化内部类时,被设置为AQS中的state。

    Sync(int permits) {
                setState(permits);
            }

    一、acquire()获取信号

      内部类Sync调用AQS中的acquireSharedInterruptibly()方法

    public final void acquireSharedInterruptibly(int arg)
                throws InterruptedException {
            if (Thread.interrupted())
                throw new InterruptedException();
            if (tryAcquireShared(arg) < 0)
                doAcquireSharedInterruptibly(arg);
        }
    • 调用tryAcquireShared()方法尝试获取信号。
    • 如果没有可用信号,将当前线程加入等待队列并挂起

      tryAcquireShared()方法被Semaphore的内部类NonfairSync和FairSync重写,实现有一些区别。

      NonfairSync.tryAcquireShared()

    final int nonfairTryAcquireShared(int acquires) {
                for (;;) {
                    int available = getState();
                    int remaining = available - acquires;
                    if (remaining < 0 ||
                        compareAndSetState(available, remaining))
                        return remaining;
                }
            }

      可以看到,非公平锁对于信号的获取是直接使用CAS进行尝试的。

      FairSync.tryAcquireShared()

    protected int tryAcquireShared(int acquires) {
                for (;;) {
                    if (hasQueuedPredecessors())
                        return -1;
                    int available = getState();
                    int remaining = available - acquires;
                    if (remaining < 0 ||
                        compareAndSetState(available, remaining))
                        return remaining;
                }
            }
    • 先调用hasQueuedPredecessors()方法,判断队列中是否有等待线程。如果有,直接返回-1,表示没有可用信号
    • 队列中没有等待线程,再使用CAS尝试更新state,获取信号

      再看看acquireSharedInterruptibly()方法中,如果没有可用信号加入队列的方法doAcquireSharedInterruptibly()

    private void doAcquireSharedInterruptibly(int arg)
            throws InterruptedException {
            final Node node = addWaiter(Node.SHARED);   // 1
            boolean failed = true;
            try {
                for (;;) {
                    final Node p = node.predecessor();   
                    if (p == head) {      // 2
                        int r = tryAcquireShared(arg);
                        if (r >= 0) {
                            setHeadAndPropagate(node, r);
                            p.next = null; // help GC
                            failed = false;
                            return;
                        }
                    }
                    if (shouldParkAfterFailedAcquire(p, node) &&     // 3
                        parkAndCheckInterrupt())
                        throw new InterruptedException();
                }
            } finally {
                if (failed)
                    cancelAcquire(node);   
            }
        }
    1. 封装一个Node节点,加入队列尾部
    2. 在无限循环中,如果当前节点是头节点,就尝试获取信号
    3. 不是头节点,在经过节点状态判断后,挂起当前线程

    二、release()释放信号  

    public final boolean releaseShared(int arg) {
            if (tryReleaseShared(arg)) {    // 1
                doReleaseShared();  // 2
                return true;
            }
            return false;
        }
    1. 更新state加一
    2. 唤醒等待队列头节点线程

      tryReleaseShared()方法在内部类Sync中被重写

    protected final boolean tryReleaseShared(int releases) {
                for (;;) {
                    int current = getState();
                    int next = current + releases;
                    if (next < current) // overflow
                        throw new Error("Maximum permit count exceeded");
                    if (compareAndSetState(current, next))
                        return true;
                }
            }

      这里也就是直接使用CAS算法,将state也就是可用信号,加1。

      

    看看Semaphore具体的使用示例

    public static void main(String[] args) {
            ThreadPoolExecutor threadPool = new ThreadPoolExecutor(10, 10,
                    0L, TimeUnit.MILLISECONDS,
                    new LinkedBlockingQueue<Runnable>(10));
            //信号总数为5
            Semaphore semaphore = new Semaphore(5);
            //运行10个线程
            for (int i = 0; i < 10; i++) {
                threadPool.execute(new Runnable() {
                    
                    @Override
                    public void run() {
                        try {
                            //获取信号
                            semaphore.acquire();   
                            System.out.println(Thread.currentThread().getName() + "获得了信号量,时间为" + System.currentTimeMillis());
                            //阻塞2秒,测试效果
                            Thread.sleep(2000);
                            System.out.println(Thread.currentThread().getName() + "释放了信号量,时间为" + System.currentTimeMillis());
                        } catch (InterruptedException e) {
                            e.printStackTrace();
                        } finally {
                            //释放信号
                            semaphore.release();
                        }
                    
                    }
                });
            }
            threadPool.shutdown();
        }

      代码结果为:

    pool-1-thread-2获得了信号量,时间为1550584196125
    pool-1-thread-1获得了信号量,时间为1550584196125
    pool-1-thread-3获得了信号量,时间为1550584196125
    pool-1-thread-4获得了信号量,时间为1550584196126
    pool-1-thread-5获得了信号量,时间为1550584196127
    pool-1-thread-2释放了信号量,时间为1550584198126
    pool-1-thread-3释放了信号量,时间为1550584198126
    pool-1-thread-4释放了信号量,时间为1550584198126
    pool-1-thread-6获得了信号量,时间为1550584198126
    pool-1-thread-9获得了信号量,时间为1550584198126
    pool-1-thread-8获得了信号量,时间为1550584198126
    pool-1-thread-1释放了信号量,时间为1550584198126
    pool-1-thread-10获得了信号量,时间为1550584198126
    pool-1-thread-5释放了信号量,时间为1550584198127
    pool-1-thread-7获得了信号量,时间为1550584198127
    pool-1-thread-6释放了信号量,时间为1550584200126
    pool-1-thread-8释放了信号量,时间为1550584200126
    pool-1-thread-10释放了信号量,时间为1550584200126
    pool-1-thread-9释放了信号量,时间为1550584200126
    pool-1-thread-7释放了信号量,时间为1550584200127

      可以看到,最多5个线程获得信号,其它线程必须等待获得信号的线程释放信号。

  • 相关阅读:
    JavaCV入门指南之快速上手篇:快速上手视频拉流、推流、录制文件、录屏、截图和编解码复用解复用等常用音视频处理操作
    javacv开发详解补充篇:如何将rgb/bgr像素数据优雅高效的转换为BufferedImage
    JavaCV开发详解之21:如何使用JavaCV接入gb28181的ps流并推流到流媒体服务和接入海康大华sdk回调h264/hevc裸流
    javacv开发详解补充篇:解决转流后视频画面快进慢放,时间跳动过大,监控视频时间戳重新计算pts和dts
    为啥你写的文章没人看?关于内容创作的两大玄学分析:认真写的没人看,随便写的火的一塌糊涂
    JavaCV进阶opencv图像检测识别:ffmpeg视频图像画面人脸检测
    JavaCV进阶opencv图像检测识别:摄像头图像人脸检测
    「Elasticsearch」ES重建索引怎么才能做到数据无缝迁移呢?
    【手记】让Fiddler捕获到SQLCLR中的网络请求
    .Net程序连接SQL Server默认会话选项备查
  • 原文地址:https://www.cnblogs.com/sunshine-ground-poems/p/10398475.html
Copyright © 2020-2023  润新知