• Java 线程 — ConcurrentHashMap


    ConcurrentHashMap

    ConcurrentHashMap 结构

    采用了分段锁的方法提高COncurrentHashMap并发,一个map里面有一个Segment数组——即多个Segment,一个Segment有一个HashEntry数组——即多个HashEntry。每个Segment持有一个锁,在put的时候会给Segment上锁,但是get的时候没有锁

    初始化

    // initialCapacity:map初始化大小
    // loadFactor:负载因子,当map中元素个数大于loadFactor*最大容量的时候进行refresh扩容
    // concurrencyLevel:并发级别,因为这个类是采用分段锁的机制实现的,该值表示分段数,需要规整为2的n次方——为了按位与计算segment数组的索引
    public ConcurrentHashMap(int initialCapacity,
                                 float loadFactor, int concurrencyLevel) {
        if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
            throw new IllegalArgumentException();
        if (concurrencyLevel > MAX_SEGMENTS)
            concurrencyLevel = MAX_SEGMENTS;
        // Find power-of-two sizes best matching arguments
        int sshift = 0;
        int ssize = 1;
        // 有可能传入的concurrencyLevel不是2的n次方,向上规整为2的n次方
        while (ssize < concurrencyLevel) {
        	// sshift记录左移的次数
            ++sshift;
            // 最终的segment个数——也就是并发级别
            ssize <<= 1;
        }
        // 参与定位segment散列
        this.segmentShift = 32 - sshift;
        // 参与定位segment散列
        this.segmentMask = ssize - 1;
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        // c为每个segment的容量
        int c = initialCapacity / ssize;
        // 因为是整数除法,如果除不尽会去尾,加上1保证容量大于等于给定的值
        if (c * ssize < initialCapacity)
            ++c;
        int cap = MIN_SEGMENT_TABLE_CAPACITY;
        while (cap < c)
            cap <<= 1;
        // create segments and segments[0]
        // 新建一个segment作为segment数组的第一个元素
        // 这里没有初始化所有的segment,采用lazy-init的方式按需初始化
        Segment<K,V> s0 =
            new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                             (HashEntry<K,V>[])new HashEntry[cap]);
        Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
        UNSAFE.putOrderedObject(ss, SBASE, s0); // ordered write of segments[0]
    	this.segments = ss;
    }
    

    put操作

    public V put(K key, V value) {
        Segment<K,V> s;
        if (value == null)
            throw new NullPointerException();
        int hash = hash(key);
        // 定位segment,因为segment是ssize个,所以定位segment就是用hash值对ssize取模,使用位运算就是
        // 将hash右移32-sshift位,因为hash是32位,ssize是sshift位
        // 将得到的值和segment与运算,segment是ssize位全1二进制大小
        int j = (hash >>> segmentShift) & segmentMask;
        if ((s = (Segment<K,V>)UNSAFE.getObject          // nonvolatile; recheck
             (segments, (j << SSHIFT) + SBASE)) == null) //  in ensureSegment
            // 因为是按需初始化,可能定位到的segment尚未初始化
            s = ensureSegment(j);
        return s.put(key, hash, value, false);
    }
    
    final V put(K key, int hash, V value, boolean onlyIfAbsent) {
    	// 获取锁,如果失败,会进行指定次数的尝试,超过指定次数以后会调用AbstractQueuedSynchronizer的acquire方法再次尝试获取,如果获取不到则阻塞
        HashEntry<K,V> node = tryLock() ? null :
            scanAndLockForPut(key, hash, value);
        V oldValue;
        try {
            HashEntry<K,V>[] tab = table;
            // 与运算得到在hashEntry数组中中的位置
            int index = (tab.length - 1) & hash;
            HashEntry<K,V> first = entryAt(tab, index);
            for (HashEntry<K,V> e = first;;) {
                if (e != null) {
                	// 如果数组中该位置原来有值
                    K k;
                    // 如果存在相同的key则替换旧值
                    if ((k = e.key) == key ||
                        (e.hash == hash && key.equals(k))) {
                        oldValue = e.value;
                        if (!onlyIfAbsent) {
                            e.value = value;
                            ++modCount;
                        }
                        break;
                    }
                    // 移到下一个元素
                    e = e.next;
                }
                else {
                	// 链表查找到最后发现不包含这个key
                    if (node != null)
                    	// 如果scanAndLockForPut返回的node非空
                        node.setNext(first);
                    else
                        node = new HashEntry<K,V>(hash, key, value, first);
                    int c = count + 1;
                    if (c > threshold && tab.length < MAXIMUM_CAPACITY)
                    	// 如果当前元素数大于threshold阈值则扩容
                        rehash(node);
                    else
                        setEntryAt(tab, index, node);
                    ++modCount;
                    count = c;
                    oldValue = null;
                    break;
                }
            }
        } finally {
            unlock();
        }
        return oldValue;
    }
    
    private HashEntry<K,V> scanAndLockForPut(K key, int hash, V value) {
        HashEntry<K,V> first = entryForHash(this, hash);
        HashEntry<K,V> e = first;
        HashEntry<K,V> node = null;
        int retries = -1; // negative while locating node
        while (!tryLock()) {
        	// 自旋过程中遍历链表是为了缓存预热,减少hash表经常出现的cache miss
            // 原代码注释
            // we might as well help warm up the associated code and accesses as well
            HashEntry<K,V> f; // to recheck first below
            if (retries < 0) {
                if (e == null) {
                    if (node == null) // speculatively create node
                        node = new HashEntry<K,V>(hash, key, value, null);
                    retries = 0;
                }
                else if (key.equals(e.key))
                    retries = 0;
                else
                    e = e.next;
            }
            else if (++retries > MAX_SCAN_RETRIES) {
            	// 超过次数之后阻塞
                lock();
                // 获得锁之后跳出循环
                break;
            }
            // 当retries个位是0并且tabel这个位置的头改变了(和之前的first不一致了,说明其他线程修改了)
            else if ((retries & 1) == 0 &&
                     (f = entryForHash(this, hash)) != first) {
                // 如果链表头改变则重新开始查找
                e = first = f; // re-traverse if entry changed
                retries = -1;
            }
        }
        return node;
    }
    

    hash算法

    private int hash(Object k) {
    	// 每次运行产生的随机种子
        int h = hashSeed;
    
        if ((0 != h) && (k instanceof String)) {
            return sun.misc.Hashing.stringHash32((String) k);
        }
    
        h ^= k.hashCode();
    
        // Spread bits to regularize both segment and index locations,
        // using variant of single-word Wang/Jenkins hash.
        h += (h <<  15) ^ 0xffffcd7d;
        h ^= (h >>> 10);
        h += (h <<   3);
        h ^= (h >>>  6);
        h += (h <<   2) + (h << 14);
        return h ^ (h >>> 16);
    }
    

    get方法

    public V get(Object key) {
        Segment<K,V> s; // manually integrate access methods to reduce overhead
        HashEntry<K,V>[] tab;
        int h = hash(key);
        long u = (((h >>> segmentShift) & segmentMask) << SSHIFT) + SBASE;
        if ((s = (Segment<K,V>)UNSAFE.getObjectVolatile(segments, u)) != null &&
            (tab = s.table) != null) {
            // 因为Segment的table是votile,所以在读的时候不需要上锁
            for (HashEntry<K,V> e = (HashEntry<K,V>) UNSAFE.getObjectVolatile
                     (tab, ((long)(((tab.length - 1) & h)) << TSHIFT) + TBASE);
                 e != null; e = e.next) {
                K k;
                if ((k = e.key) == key || (e.hash == h && key.equals(k)))
                    return e.value;
            }
        }
        return null;
    }
    

    参考

    http://nfhy.wang/Java-ConcurrenceHashMap-Segment/
    Java并发编程的艺术

  • 相关阅读:
    Redis常用操作命令
    redis-sentinel.conf配置项详解
    Kafka常用命令
    go modules的使用姿势
    GO语言密码加解密(bcrypt)
    ssh-copy-id 秘钥分发报错
    k8s 命令提示
    算法与数据结构(持续更新)
    【spring】 @PostConstruct注解
    Spring Boot 整合Redis
  • 原文地址:https://www.cnblogs.com/sunshine-2015/p/thread.html
Copyright © 2020-2023  润新知