• leetcode — recover-binary-search-tree


    import java.util.ArrayList;
    import java.util.Arrays;
    import java.util.Collections;
    import java.util.List;
    
    /**
     * Source : https://oj.leetcode.com/problems/recover-binary-search-tree/
     *
     *
     * Two elements of a binary search tree (BST) are swapped by mistake.
     *
     * Recover the tree without changing its structure.
     *
     * Note:
     * A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?
     *
     * confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.
     *
     * OJ's Binary Tree Serialization:
     *
     * The serialization of a binary tree follows a level order traversal, where '#' signifies
     * a path terminator where no node exists below.
     *
     * Here's an example:
     *
     *    1
     *   / 
     *  2   3
     *     /
     *    4
     *     
     *      5
     *
     * The above binary tree is serialized as "{1,2,3,#,#,4,#,#,5}".
     */
    public class RecoverBinarySearchTree {
    
        private TreeNode n1;
        private TreeNode n2;
        private TreeNode pre;
    
        /**
         * 搜索二叉树
         * 将错误调换位置的两个元素恢复位置
         *
         * 先中序遍历树,将节点的value放到一个数组中,并将节点也放到一个数组中
         * 然后将value数组排序
         * 然后依次赋值给节点数组中每个节点,然后将节点数组恢复成一棵树
         * 占用空间为O(n)
         *
         * @param root
         * @return
         */
        public TreeNode recover (TreeNode root) {
            List<Integer> arr = new ArrayList<Integer>();
            List<TreeNode> treeList = new ArrayList<TreeNode>();
            traverseInorder(root, arr, treeList);
            Collections.sort(arr);
            for (int i = 0; i < arr.size(); i++) {
                treeList.get(i).value = arr.get(i);
            }
            return root;
    
        }
    
        public void traverseInorder (TreeNode root, List<Integer> arr, List<TreeNode> treeList) {
            if (root == null) {
                return ;
            }
            traverseInorder(root.leftChild, arr, treeList);
            arr.add(root.value);
            treeList.add(root);
            traverseInorder(root.rightChild, arr, treeList);
        }
    
    
        /**
         * 二叉搜索树:中序遍历的时候是单调递增的
         *
         * 中序遍历树,将树遍历为一个链表,当前节点的值一定大于上一个节点的值,否则就是被调换的节点,中序遍历的时候记录调换的两个节点
         * 因为只有两个节点被置换,所以如果是第一次出现上一个节点的值大于当前节点,说明是被换到其前面的节点,所以被置换的是上一个节点
         * 如果是第二次出现上一个节点的值大于当前节点,那么当前节点是被置换的节点
         * 中序遍历完成后,调换记录的两个节点的值,就恢复了二叉搜索树
         *
         * @param root
         * @return
         */
        public TreeNode recoverTree (TreeNode root) {
            traverseInorder(root);
            if (n1 != null && n2 != null) {
                int temp = n1.value;
                n1.value = n2.value;
                n2.value = temp;
            }
            return root;
        }
    
        public void traverseInorder (TreeNode root) {
            if (root == null) {
                return;
            }
            traverseInorder(root.leftChild);
            if (pre != null) {
                if (pre.value > root.value) {
                    if (n1 == null) {
                        n1 = pre;
                    }
                    n2 = root;
                }
            }
            pre = root;
            traverseInorder(root.rightChild);
        }
    
    
        public TreeNode createTree (char[] treeArr) {
            TreeNode[] tree = new TreeNode[treeArr.length];
            for (int i = 0; i < treeArr.length; i++) {
                if (treeArr[i] == '#') {
                    tree[i] = null;
                    continue;
                }
                tree[i] = new TreeNode(treeArr[i]-'0');
            }
            int pos = 0;
            for (int i = 0; i < treeArr.length && pos < treeArr.length-1; i++) {
                if (tree[i] != null) {
                    tree[i].leftChild = tree[++pos];
                    if (pos < treeArr.length-1) {
                        tree[i].rightChild = tree[++pos];
                    }
                }
            }
            return tree[0];
        }
    
        /**
         * 使用广度优先遍历将树转化为数组
         *
         * @param root
         * @param chs
         */
        public void binarySearchTreeToArray (TreeNode root, List<Character> chs) {
            if (root == null) {
                chs.add('#');
                return;
            }
            List<TreeNode> list = new ArrayList<TreeNode>();
            int head = 0;
            int tail = 0;
            list.add(root);
            chs.add((char) (root.value + '0'));
            tail ++;
            TreeNode temp = null;
    
            while (head < tail) {
                temp = list.get(head);
                if (temp.leftChild != null) {
                    list.add(temp.leftChild);
                    chs.add((char) (temp.leftChild.value + '0'));
                    tail ++;
                } else {
                    chs.add('#');
                }
                if (temp.rightChild != null) {
                    list.add(temp.rightChild);
                    chs.add((char)(temp.rightChild.value + '0'));
                    tail ++;
                } else {
                    chs.add('#');
                }
                head ++;
            }
    
            //去除最后不必要的
            for (int i = chs.size()-1; i > 0; i--) {
                if (chs.get(i) != '#') {
                    break;
                }
                chs.remove(i);
            }
        }
    
        private class TreeNode {
            TreeNode leftChild;
            TreeNode rightChild;
            int value;
    
            public TreeNode(int value) {
                this.value = value;
            }
    
            public TreeNode() {
            }
        }
    
        public static void main(String[] args) {
            RecoverBinarySearchTree recoverBinarySearchTree = new RecoverBinarySearchTree();
            char[] tree = new char[]{'3','4','5','#','#','2'};
            List<Character> chars = new ArrayList<Character>();
            recoverBinarySearchTree.binarySearchTreeToArray(recoverBinarySearchTree.recover(recoverBinarySearchTree.createTree(tree)), chars);
            System.out.println(Arrays.toString(chars.toArray(new Character[chars.size()])));
    
    
            chars = new ArrayList<Character>();
            recoverBinarySearchTree.binarySearchTreeToArray(recoverBinarySearchTree.recoverTree(recoverBinarySearchTree.createTree(tree)), chars);
            System.out.println(Arrays.toString(chars.toArray(new Character[chars.size()])));
        }
    
    }
    
  • 相关阅读:
    u-boot.lds分析
    u-boot的makefile中的一些目录的设定,以及涉及的shell,make语法。
    u-boot入门第一步,分析mkconfig
    uboot学习——Makefile里的echo使用!
    Linux下的打包与压缩和tar命令!
    关于undefined reference的问题
    JZ2440 编译Uboot1.1.6 undefined reference to ‘raise’
    POJ 1094 Sorting It All Out
    链式前向星
    Codeforces Round #197 (Div. 2) A~D
  • 原文地址:https://www.cnblogs.com/sunshine-2015/p/7802247.html
Copyright © 2020-2023  润新知